[feat] Added sparse KVcache feature, NEED VERIFY.
This commit is contained in:
@@ -3,12 +3,17 @@ import time
|
||||
from random import randint, seed
|
||||
from nanovllm import LLM, SamplingParams
|
||||
|
||||
# Import sparse policy classes
|
||||
from nanovllm.kvcache.sparse.quest import QuestPolicy, QuestConfig, BlockMetadataManager
|
||||
from nanovllm.kvcache.sparse.hybrid import HybridPolicy
|
||||
from nanovllm.kvcache.sparse.full_policy import FullAttentionPolicy
|
||||
|
||||
|
||||
def bench_decode(llm, num_seqs, input_len, max_output_len):
|
||||
"""Benchmark decode performance (original test)"""
|
||||
seed(0)
|
||||
prompt_token_ids = [[randint(0, 10000) for _ in range(randint(100, input_len))] for _ in range(num_seqs)]
|
||||
sampling_params = [SamplingParams(temperature=0.6, ignore_eos=True, max_tokens=randint(100, max_output_len)) for _ in range(num_seqs)]
|
||||
prompt_token_ids = [[randint(0, 10000) for _ in range(input_len)] for _ in range(num_seqs)]
|
||||
sampling_params = [SamplingParams(temperature=0.6, ignore_eos=True, max_tokens=max_output_len) for _ in range(num_seqs)]
|
||||
|
||||
t = time.time()
|
||||
llm.generate(prompt_token_ids, sampling_params, use_tqdm=False)
|
||||
@@ -33,7 +38,67 @@ def bench_prefill(llm, num_seqs, input_len):
|
||||
print(f"[Prefill] Input: {total_input_tokens}tok ({num_seqs}x{input_len}), Time: {t:.2f}s, Throughput: {throughput:.2f}tok/s")
|
||||
|
||||
|
||||
def setup_quest_policy(llm, topk_blocks=8, threshold_blocks=4):
|
||||
"""
|
||||
Setup Quest sparse policy for decode phase.
|
||||
|
||||
Uses HybridPolicy: Full attention for prefill, Quest Top-K for decode.
|
||||
"""
|
||||
import torch
|
||||
|
||||
kvcache_manager = llm.model_runner.kvcache_manager
|
||||
offload_engine = kvcache_manager.offload_engine
|
||||
|
||||
# Get model parameters from offload engine
|
||||
num_layers = offload_engine.num_layers
|
||||
num_kv_heads = offload_engine.num_kv_heads
|
||||
head_dim = offload_engine.head_dim
|
||||
num_cpu_blocks = kvcache_manager.num_cpu_blocks
|
||||
dtype = offload_engine.k_cache_cpu.dtype
|
||||
|
||||
print(f"Setting up Quest policy:")
|
||||
print(f" num_layers={num_layers}, num_kv_heads={num_kv_heads}, head_dim={head_dim}")
|
||||
print(f" num_cpu_blocks={num_cpu_blocks}, dtype={dtype}")
|
||||
print(f" topk_blocks={topk_blocks}, threshold_blocks={threshold_blocks}")
|
||||
|
||||
# Create BlockMetadataManager for storing min/max keys
|
||||
metadata = BlockMetadataManager(
|
||||
num_blocks=num_cpu_blocks,
|
||||
num_layers=num_layers,
|
||||
num_kv_heads=num_kv_heads,
|
||||
head_dim=head_dim,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
# Create Quest policy for decode
|
||||
quest_config = QuestConfig(
|
||||
topk_blocks=topk_blocks,
|
||||
threshold_blocks=threshold_blocks,
|
||||
)
|
||||
quest_policy = QuestPolicy(quest_config, metadata)
|
||||
|
||||
# Create Hybrid policy: Full for prefill, Quest for decode
|
||||
hybrid_policy = HybridPolicy(
|
||||
prefill_policy=FullAttentionPolicy(),
|
||||
decode_policy=quest_policy,
|
||||
)
|
||||
|
||||
# Set the policy
|
||||
kvcache_manager.set_sparse_policy(hybrid_policy)
|
||||
print(f" Policy set: HybridPolicy(prefill=Full, decode=Quest)")
|
||||
|
||||
return hybrid_policy
|
||||
|
||||
|
||||
def main():
|
||||
import argparse
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--no-sparse", action="store_true", help="Disable sparse attention (baseline)")
|
||||
parser.add_argument("--topk", type=int, default=8, help="Top-K blocks for Quest")
|
||||
parser.add_argument("--input-len", type=int, default=128 * 1024, help="Input length in tokens")
|
||||
parser.add_argument("--output-len", type=int, default=128, help="Output length in tokens")
|
||||
args = parser.parse_args()
|
||||
|
||||
path = os.path.expanduser("~/models/Qwen3-4B-Instruct-2507/")
|
||||
llm = LLM(
|
||||
path,
|
||||
@@ -45,22 +110,25 @@ def main():
|
||||
num_prefetch_blocks=4,
|
||||
)
|
||||
|
||||
if not args.no_sparse:
|
||||
# Setup Quest policy for decode (Top-K blocks, apply when > 4 blocks)
|
||||
setup_quest_policy(llm, topk_blocks=args.topk, threshold_blocks=4)
|
||||
print(f"\n[Quest Sparse Attention] topk={args.topk}")
|
||||
else:
|
||||
print("\n[Full Attention] No sparse policy (baseline)")
|
||||
|
||||
# Warmup
|
||||
llm.generate(["Benchmark: "], SamplingParams())
|
||||
|
||||
print("=" * 60)
|
||||
print("Prefill Benchmark (CPU Offload)")
|
||||
print("=" * 60)
|
||||
# bench_prefill(llm, num_seqs=1, input_len=1024)
|
||||
# bench_prefill(llm, num_seqs=1, input_len=2048)
|
||||
# bench_prefill(llm, num_seqs=1, input_len=4096)
|
||||
bench_prefill(llm, num_seqs=1, input_len=128 * 1024)
|
||||
bench_prefill(llm, num_seqs=1, input_len=args.input_len)
|
||||
|
||||
print("=" * 60)
|
||||
print("Decode Benchmark (CPU Offload)")
|
||||
print("=" * 60)
|
||||
bench_decode(llm, num_seqs=1, input_len=128 * 1024, max_output_len=128)
|
||||
# bench_decode(llm, num_seqs=1, input_len=2048, max_output_len=128)
|
||||
bench_decode(llm, num_seqs=1, input_len=args.input_len, max_output_len=args.output_len)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
Reference in New Issue
Block a user