[feat] Added num_gpu_blocks limit gpu blocks.

This commit is contained in:
Zijie Tian
2025-12-10 20:17:42 +08:00
parent 01f19ee4a6
commit 0a247ccb1b
7 changed files with 150 additions and 9 deletions

View File

@@ -0,0 +1,114 @@
"""
Test chunked attention with small num_gpu_blocks to trigger CPU offload.
For 8K tokens with block_size=256:
- Total blocks needed: 8192 / 256 = 32 blocks
- With num_gpu_blocks=10, 22 blocks go to CPU -> triggers chunked attention
"""
import os
import sys
# Enable debug logging before importing nanovllm
os.environ["NANOVLLM_LOG_LEVEL"] = "DEBUG"
from nanovllm import LLM, SamplingParams
def test_chunked_prefill(num_gpu_blocks=10, input_len=8192, output_len=16):
"""Test chunked prefill with limited GPU blocks."""
path = os.path.expanduser("~/models/Qwen3-4B-Instruct-2507/")
total_blocks = (input_len + 255) // 256
print(f"=" * 60)
print(f"Chunked Prefill Test")
print(f"=" * 60)
print(f" input_len: {input_len} tokens")
print(f" total_blocks: {total_blocks}")
print(f" num_gpu_blocks: {num_gpu_blocks}")
print(f" blocks_on_cpu: {max(0, total_blocks - num_gpu_blocks)}")
print()
llm = LLM(
path,
enforce_eager=False,
max_model_len=16 * 1024, # 16K is enough for 8K test
max_num_batched_tokens=16 * 1024,
enable_cpu_offload=True,
cpu_memory_gb=4.0,
num_gpu_blocks=num_gpu_blocks,
)
print(f"LLM initialized:")
print(f" num_gpu_kvcache_blocks: {llm.model_runner.config.num_gpu_kvcache_blocks}")
print(f" num_cpu_kvcache_blocks: {llm.model_runner.config.num_cpu_kvcache_blocks}")
print()
# Create prompt with approximate token count
prompt = "Hello " * (input_len // 2)
print(f"Running generation...")
outputs = llm.generate(
[prompt],
SamplingParams(temperature=0.6, max_tokens=output_len),
use_tqdm=True,
)
print()
print(f"Output tokens: {len(outputs[0]['token_ids'])}")
print(f"Output text (first 100 chars): {outputs[0]['text'][:100]}")
print()
return outputs
def test_chunked_decode(num_gpu_blocks=10, input_len=8192, output_len=64):
"""Test chunked decode with limited GPU blocks."""
path = os.path.expanduser("~/models/Qwen3-4B-Instruct-2507/")
total_blocks = (input_len + 255) // 256
print(f"=" * 60)
print(f"Chunked Decode Test")
print(f"=" * 60)
print(f" input_len: {input_len} tokens")
print(f" output_len: {output_len} tokens")
print(f" total_blocks: {total_blocks}")
print(f" num_gpu_blocks: {num_gpu_blocks}")
print()
llm = LLM(
path,
enforce_eager=False,
max_model_len=16 * 1024,
max_num_batched_tokens=16 * 1024,
enable_cpu_offload=True,
cpu_memory_gb=4.0,
num_gpu_blocks=num_gpu_blocks,
)
print(f"LLM initialized:")
print(f" num_gpu_kvcache_blocks: {llm.model_runner.config.num_gpu_kvcache_blocks}")
print(f" num_cpu_kvcache_blocks: {llm.model_runner.config.num_cpu_kvcache_blocks}")
print()
prompt = "Hello " * (input_len // 2)
print(f"Running generation...")
outputs = llm.generate(
[prompt],
SamplingParams(temperature=0.6, max_tokens=output_len),
use_tqdm=True,
)
print()
print(f"Output tokens: {len(outputs[0]['token_ids'])}")
print(f"Output text (first 100 chars): {outputs[0]['text'][:100]}")
print()
return outputs
if __name__ == "__main__":
# Parse arguments
num_gpu_blocks = int(sys.argv[1]) if len(sys.argv) > 1 else 10
input_len = int(sys.argv[2]) if len(sys.argv) > 2 else 8192
output_len = int(sys.argv[3]) if len(sys.argv) > 3 else 32
test_chunked_prefill(num_gpu_blocks, input_len, output_len)