release
This commit is contained in:
37
README.md
37
README.md
@@ -1 +1,36 @@
|
||||
# Nano-VLLM
|
||||
# Nano-vLLM
|
||||
|
||||
A lightweight vLLM implementation built from scratch.
|
||||
|
||||
## Key Features
|
||||
|
||||
* 🚀 **Fase offline inference** - Comparable inference speeds to vLLM
|
||||
* 📖 **Readable codebase** - Clean implementation under 1,200 lines of Python code
|
||||
* ⚡ **Optimization Suite** - Prefix caching, Torch compilation, CUDA graph, etc
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
pip install git+https://github.com/GeeeekExplorer/nano-vllm.git
|
||||
```
|
||||
|
||||
## Quick Start
|
||||
|
||||
See `example.py` for usage. The API mirrors vLLM's interface with minor differences in the `LLM.generate` method.
|
||||
|
||||
## Benchmark
|
||||
|
||||
See `bench.py` for benchmark.
|
||||
|
||||
**Test Configuration:**
|
||||
- Hardware: RTX 4070
|
||||
- Model: Qwen3-0.6B
|
||||
- Total Requests: 256 sequences
|
||||
- Input Length: Randomly sampled between 100–1024 tokens
|
||||
- Output Length: Randomly sampled between 100–1024 tokens
|
||||
|
||||
**Performance Results:**
|
||||
| Inference Engine | Output Tokens | Time (s) | Throughput (tokens/s) |
|
||||
|----------------|-------------|----------|-----------------------|
|
||||
| vLLM | 133,966 | 98.95 | 1353.86 |
|
||||
| Nano-vLLM | 133,966 | 101.90 | 1314.65 |
|
||||
|
||||
Reference in New Issue
Block a user