[refactor] Refactor current gpu and cpu block allocation strategy.
This commit is contained in:
@@ -14,63 +14,66 @@ os.environ["NANOVLLM_LOG_LEVEL"] = "DEBUG"
|
||||
from nanovllm import LLM, SamplingParams
|
||||
|
||||
|
||||
def test_chunked_prefill(num_gpu_blocks=10, input_len=8192, output_len=16):
|
||||
def create_long_context_prompt(target_tokens: int) -> str:
|
||||
"""
|
||||
Create a meaningful long context prompt with a question at the end.
|
||||
The answer depends on information scattered throughout the context.
|
||||
"""
|
||||
# Key facts to embed in the context
|
||||
facts = [
|
||||
"The capital of France is Paris.",
|
||||
"The Eiffel Tower was built in 1889.",
|
||||
"Python was created by Guido van Rossum.",
|
||||
"The speed of light is approximately 299,792 kilometers per second.",
|
||||
"Mount Everest is 8,848 meters tall.",
|
||||
]
|
||||
|
||||
# Padding text to reach target length
|
||||
padding_paragraph = """
|
||||
This is additional context information that helps extend the length of the prompt.
|
||||
Machine learning has revolutionized many fields including computer vision, natural language processing, and robotics.
|
||||
Deep neural networks can learn complex patterns from large amounts of data.
|
||||
The transformer architecture has become the foundation of modern language models.
|
||||
Attention mechanisms allow models to focus on relevant parts of the input.
|
||||
"""
|
||||
|
||||
# Build the prompt
|
||||
prompt_parts = []
|
||||
|
||||
# Add instruction
|
||||
prompt_parts.append("Please read the following information carefully and answer the question at the end.\n\n")
|
||||
|
||||
# Add facts at different positions
|
||||
current_tokens = 50 # approximate tokens so far
|
||||
tokens_per_padding = 80 # approximate tokens per padding paragraph
|
||||
fact_interval = target_tokens // (len(facts) + 1)
|
||||
|
||||
fact_idx = 0
|
||||
while current_tokens < target_tokens - 100:
|
||||
# Add padding
|
||||
prompt_parts.append(padding_paragraph)
|
||||
current_tokens += tokens_per_padding
|
||||
|
||||
# Add a fact at intervals
|
||||
if fact_idx < len(facts) and current_tokens > fact_interval * (fact_idx + 1):
|
||||
prompt_parts.append(f"\n[Important Fact #{fact_idx + 1}]: {facts[fact_idx]}\n")
|
||||
current_tokens += 20
|
||||
fact_idx += 1
|
||||
|
||||
# Add the question at the end
|
||||
prompt_parts.append("\n\nQuestion: Based on the information above, what is the capital of France and when was the Eiffel Tower built? Please answer briefly.\n\nAnswer:")
|
||||
|
||||
return "".join(prompt_parts)
|
||||
|
||||
|
||||
def test_chunked_prefill(num_gpu_blocks=10, input_len=8192, output_len=64):
|
||||
"""Test chunked prefill with limited GPU blocks."""
|
||||
path = os.path.expanduser("~/models/Qwen3-4B-Instruct-2507/")
|
||||
|
||||
total_blocks = (input_len + 255) // 256
|
||||
print(f"=" * 60)
|
||||
print(f"Chunked Prefill Test")
|
||||
print(f"Chunked Prefill Test (Ping-Pong)")
|
||||
print(f"=" * 60)
|
||||
print(f" input_len: {input_len} tokens")
|
||||
print(f" total_blocks: {total_blocks}")
|
||||
print(f" num_gpu_blocks: {num_gpu_blocks}")
|
||||
print(f" blocks_on_cpu: {max(0, total_blocks - num_gpu_blocks)}")
|
||||
print()
|
||||
|
||||
llm = LLM(
|
||||
path,
|
||||
enforce_eager=False,
|
||||
max_model_len=16 * 1024, # 16K is enough for 8K test
|
||||
max_num_batched_tokens=16 * 1024,
|
||||
enable_cpu_offload=True,
|
||||
cpu_memory_gb=4.0,
|
||||
num_gpu_blocks=num_gpu_blocks,
|
||||
)
|
||||
|
||||
print(f"LLM initialized:")
|
||||
print(f" num_gpu_kvcache_blocks: {llm.model_runner.config.num_gpu_kvcache_blocks}")
|
||||
print(f" num_cpu_kvcache_blocks: {llm.model_runner.config.num_cpu_kvcache_blocks}")
|
||||
print()
|
||||
|
||||
# Create prompt with approximate token count
|
||||
prompt = "Hello " * (input_len // 2)
|
||||
|
||||
print(f"Running generation...")
|
||||
outputs = llm.generate(
|
||||
[prompt],
|
||||
SamplingParams(temperature=0.6, max_tokens=output_len),
|
||||
use_tqdm=True,
|
||||
)
|
||||
|
||||
print()
|
||||
print(f"Output tokens: {len(outputs[0]['token_ids'])}")
|
||||
print(f"Output text (first 100 chars): {outputs[0]['text'][:100]}")
|
||||
print()
|
||||
return outputs
|
||||
|
||||
|
||||
def test_chunked_decode(num_gpu_blocks=10, input_len=8192, output_len=64):
|
||||
"""Test chunked decode with limited GPU blocks."""
|
||||
path = os.path.expanduser("~/models/Qwen3-4B-Instruct-2507/")
|
||||
|
||||
total_blocks = (input_len + 255) // 256
|
||||
print(f"=" * 60)
|
||||
print(f"Chunked Decode Test")
|
||||
print(f"=" * 60)
|
||||
print(f" input_len: {input_len} tokens")
|
||||
print(f" output_len: {output_len} tokens")
|
||||
print(f" total_blocks: {total_blocks}")
|
||||
print(f" target_input_len: ~{input_len} tokens")
|
||||
print(f" num_gpu_blocks: {num_gpu_blocks}")
|
||||
print()
|
||||
|
||||
@@ -80,27 +83,62 @@ def test_chunked_decode(num_gpu_blocks=10, input_len=8192, output_len=64):
|
||||
max_model_len=16 * 1024,
|
||||
max_num_batched_tokens=16 * 1024,
|
||||
enable_cpu_offload=True,
|
||||
cpu_memory_gb=4.0,
|
||||
num_gpu_blocks=num_gpu_blocks,
|
||||
)
|
||||
|
||||
print(f"LLM initialized:")
|
||||
print(f" num_gpu_kvcache_blocks: {llm.model_runner.config.num_gpu_kvcache_blocks}")
|
||||
print(f" num_cpu_kvcache_blocks: {llm.model_runner.config.num_cpu_kvcache_blocks}")
|
||||
print()
|
||||
|
||||
prompt = "Hello " * (input_len // 2)
|
||||
# Create meaningful prompt
|
||||
prompt = create_long_context_prompt(input_len)
|
||||
|
||||
print(f"Running generation...")
|
||||
outputs = llm.generate(
|
||||
[prompt],
|
||||
SamplingParams(temperature=0.6, max_tokens=output_len),
|
||||
use_tqdm=True,
|
||||
SamplingParams(temperature=0.1, max_tokens=output_len), # low temperature for more deterministic output
|
||||
use_tqdm=False,
|
||||
)
|
||||
|
||||
print()
|
||||
print(f"Output tokens: {len(outputs[0]['token_ids'])}")
|
||||
print(f"Output text (first 100 chars): {outputs[0]['text'][:100]}")
|
||||
print(f"Output text:\n{outputs[0]['text']}")
|
||||
print()
|
||||
return outputs
|
||||
|
||||
|
||||
def test_chunked_decode(num_gpu_blocks=10, input_len=8192, output_len=128):
|
||||
"""Test chunked decode with limited GPU blocks."""
|
||||
path = os.path.expanduser("~/models/Qwen3-4B-Instruct-2507/")
|
||||
|
||||
print(f"=" * 60)
|
||||
print(f"Chunked Decode Test (Ping-Pong)")
|
||||
print(f"=" * 60)
|
||||
print(f" target_input_len: ~{input_len} tokens")
|
||||
print(f" output_len: {output_len} tokens")
|
||||
print(f" num_gpu_blocks: {num_gpu_blocks}")
|
||||
print()
|
||||
|
||||
llm = LLM(
|
||||
path,
|
||||
enforce_eager=False,
|
||||
max_model_len=16 * 1024,
|
||||
max_num_batched_tokens=16 * 1024,
|
||||
enable_cpu_offload=True,
|
||||
num_gpu_blocks=num_gpu_blocks,
|
||||
)
|
||||
print()
|
||||
|
||||
# Create meaningful prompt
|
||||
prompt = create_long_context_prompt(input_len)
|
||||
|
||||
print(f"Running generation...")
|
||||
outputs = llm.generate(
|
||||
[prompt],
|
||||
SamplingParams(temperature=0.1, max_tokens=output_len),
|
||||
use_tqdm=False,
|
||||
)
|
||||
|
||||
print()
|
||||
print(f"Output tokens: {len(outputs[0]['token_ids'])}")
|
||||
print(f"Output text:\n{outputs[0]['text']}")
|
||||
print()
|
||||
return outputs
|
||||
|
||||
@@ -108,7 +146,7 @@ def test_chunked_decode(num_gpu_blocks=10, input_len=8192, output_len=64):
|
||||
if __name__ == "__main__":
|
||||
# Parse arguments
|
||||
num_gpu_blocks = int(sys.argv[1]) if len(sys.argv) > 1 else 10
|
||||
input_len = int(sys.argv[2]) if len(sys.argv) > 2 else 8192
|
||||
output_len = int(sys.argv[3]) if len(sys.argv) > 3 else 32
|
||||
input_len = int(sys.argv[2]) if len(sys.argv) > 2 else 2048
|
||||
output_len = int(sys.argv[3]) if len(sys.argv) > 3 else 64
|
||||
|
||||
test_chunked_prefill(num_gpu_blocks, input_len, output_len)
|
||||
Reference in New Issue
Block a user