same as vllm
This commit is contained in:
@@ -14,9 +14,9 @@ A lightweight vLLM implementation built from scratch.
|
|||||||
pip install git+https://github.com/GeeeekExplorer/nano-vllm.git
|
pip install git+https://github.com/GeeeekExplorer/nano-vllm.git
|
||||||
```
|
```
|
||||||
|
|
||||||
## Manual download
|
## Manual Download
|
||||||
|
|
||||||
If you’d rather fetch the model weights yourself, you can use:
|
If you prefer to download the model weights manually, use the following command:
|
||||||
```bash
|
```bash
|
||||||
huggingface-cli download --resume-download Qwen/Qwen3-0.6B \
|
huggingface-cli download --resume-download Qwen/Qwen3-0.6B \
|
||||||
--local-dir ~/huggingface/Qwen3-0.6B/ \
|
--local-dir ~/huggingface/Qwen3-0.6B/ \
|
||||||
@@ -25,7 +25,7 @@ huggingface-cli download --resume-download Qwen/Qwen3-0.6B \
|
|||||||
|
|
||||||
## Quick Start
|
## Quick Start
|
||||||
|
|
||||||
See `example.py` for usage. The API mirrors vLLM's interface with minor differences in the `LLM.generate` method.
|
See `example.py` for usage. The API mirrors vLLM's interface with minor differences in the `LLM.generate` method:
|
||||||
```python
|
```python
|
||||||
from nanovllm import LLM, SamplingParams
|
from nanovllm import LLM, SamplingParams
|
||||||
llm = LLM("/YOUR/MODEL/PATH", enforce_eager=True, tensor_parallel_size=1)
|
llm = LLM("/YOUR/MODEL/PATH", enforce_eager=True, tensor_parallel_size=1)
|
||||||
|
|||||||
@@ -22,7 +22,7 @@ class ModelRunner:
|
|||||||
self.world_size = config.tensor_parallel_size
|
self.world_size = config.tensor_parallel_size
|
||||||
self.rank = rank
|
self.rank = rank
|
||||||
self.event = event
|
self.event = event
|
||||||
|
|
||||||
dist.init_process_group("nccl", "tcp://localhost:2333", world_size=self.world_size, rank=rank)
|
dist.init_process_group("nccl", "tcp://localhost:2333", world_size=self.world_size, rank=rank)
|
||||||
torch.cuda.set_device(rank)
|
torch.cuda.set_device(rank)
|
||||||
default_dtype = torch.get_default_dtype()
|
default_dtype = torch.get_default_dtype()
|
||||||
@@ -31,8 +31,8 @@ class ModelRunner:
|
|||||||
self.model = Qwen3ForCausalLM(hf_config)
|
self.model = Qwen3ForCausalLM(hf_config)
|
||||||
load_model(self.model, config.model)
|
load_model(self.model, config.model)
|
||||||
self.sampler = Sampler()
|
self.sampler = Sampler()
|
||||||
peak = self.warmup_model()
|
self.warmup_model()
|
||||||
self.allocate_kv_cache(config.gpu_memory_utilization, peak)
|
self.allocate_kv_cache()
|
||||||
if not self.enforce_eager:
|
if not self.enforce_eager:
|
||||||
self.capture_cudagraph()
|
self.capture_cudagraph()
|
||||||
torch.set_default_device("cpu")
|
torch.set_default_device("cpu")
|
||||||
@@ -47,18 +47,6 @@ class ModelRunner:
|
|||||||
self.shm = SharedMemory(name="nanovllm")
|
self.shm = SharedMemory(name="nanovllm")
|
||||||
self.loop()
|
self.loop()
|
||||||
|
|
||||||
def warmup_model(self):
|
|
||||||
torch.cuda.empty_cache()
|
|
||||||
torch.cuda.reset_peak_memory_stats()
|
|
||||||
before = torch.cuda.memory_stats().get("allocated_bytes.all.peak", 0)
|
|
||||||
max_num_batched_tokens, max_model_len = self.config.max_num_batched_tokens, self.config.max_model_len
|
|
||||||
num_seqs = min(max_num_batched_tokens // max_model_len, self.config.max_num_seqs)
|
|
||||||
seqs = [Sequence([0] * max_model_len) for _ in range(num_seqs)]
|
|
||||||
self.run(seqs, True)
|
|
||||||
torch.cuda.empty_cache()
|
|
||||||
after = torch.cuda.memory_stats().get("allocated_bytes.all.peak", 0)
|
|
||||||
return after - before
|
|
||||||
|
|
||||||
def exit(self):
|
def exit(self):
|
||||||
if self.world_size > 1:
|
if self.world_size > 1:
|
||||||
self.shm.close()
|
self.shm.close()
|
||||||
@@ -102,15 +90,25 @@ class ModelRunner:
|
|||||||
assert callable(method)
|
assert callable(method)
|
||||||
return method(*args)
|
return method(*args)
|
||||||
|
|
||||||
def allocate_kv_cache(self, gpu_memory_utilization, peak):
|
def warmup_model(self):
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
torch.cuda.reset_peak_memory_stats()
|
||||||
|
max_num_batched_tokens, max_model_len = self.config.max_num_batched_tokens, self.config.max_model_len
|
||||||
|
num_seqs = min(max_num_batched_tokens // max_model_len, self.config.max_num_seqs)
|
||||||
|
seqs = [Sequence([0] * max_model_len) for _ in range(num_seqs)]
|
||||||
|
self.run(seqs, True)
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
|
def allocate_kv_cache(self):
|
||||||
config = self.config
|
config = self.config
|
||||||
hf_config = config.hf_config
|
hf_config = config.hf_config
|
||||||
free, total = torch.cuda.mem_get_info()
|
free, total = torch.cuda.mem_get_info()
|
||||||
used = total - free
|
used = total - free
|
||||||
|
peak = torch.cuda.memory_stats()["allocated_bytes.all.peak"]
|
||||||
|
current = torch.cuda.memory_stats()["allocated_bytes.all.current"]
|
||||||
num_kv_heads = hf_config.num_key_value_heads // self.world_size
|
num_kv_heads = hf_config.num_key_value_heads // self.world_size
|
||||||
block_bytes = 2 * hf_config.num_hidden_layers * self.block_size * num_kv_heads * hf_config.head_dim * hf_config.torch_dtype.itemsize
|
block_bytes = 2 * hf_config.num_hidden_layers * self.block_size * num_kv_heads * hf_config.head_dim * hf_config.torch_dtype.itemsize
|
||||||
config.num_kvcache_blocks = int(total * gpu_memory_utilization - used - peak) // block_bytes
|
config.num_kvcache_blocks = int(total * config.gpu_memory_utilization - used - peak + current) // block_bytes
|
||||||
print(f"{config.num_kvcache_blocks=}")
|
|
||||||
self.kv_cache = torch.zeros(2, hf_config.num_hidden_layers, config.num_kvcache_blocks, self.block_size, num_kv_heads, hf_config.head_dim)
|
self.kv_cache = torch.zeros(2, hf_config.num_hidden_layers, config.num_kvcache_blocks, self.block_size, num_kv_heads, hf_config.head_dim)
|
||||||
layer_id = 0
|
layer_id = 0
|
||||||
for module in self.model.modules():
|
for module in self.model.modules():
|
||||||
|
|||||||
@@ -61,8 +61,7 @@ class Attention(nn.Module):
|
|||||||
k = k.view(-1, self.num_kv_heads, self.head_dim)
|
k = k.view(-1, self.num_kv_heads, self.head_dim)
|
||||||
v = v.view(-1, self.num_kv_heads, self.head_dim)
|
v = v.view(-1, self.num_kv_heads, self.head_dim)
|
||||||
context = get_context()
|
context = get_context()
|
||||||
k_cache = self.k_cache
|
k_cache, v_cache = self.k_cache, self.v_cache
|
||||||
v_cache = self.v_cache
|
|
||||||
if k_cache.numel() and v_cache.numel():
|
if k_cache.numel() and v_cache.numel():
|
||||||
store_kvcache(k, v, k_cache, v_cache, context.slot_mapping)
|
store_kvcache(k, v, k_cache, v_cache, context.slot_mapping)
|
||||||
if context.is_prefill:
|
if context.is_prefill:
|
||||||
|
|||||||
Reference in New Issue
Block a user