support tensor parallel
This commit is contained in:
@@ -9,6 +9,7 @@ class Config:
|
||||
max_num_seqs: int = 512
|
||||
max_model_len: int = 4096
|
||||
gpu_memory_utilization: float = 0.9
|
||||
tensor_parallel_size: int = 1
|
||||
enforce_eager: bool = False
|
||||
hf_config: AutoConfig | None = None
|
||||
eos: int = -1
|
||||
|
||||
@@ -1,6 +1,8 @@
|
||||
import atexit
|
||||
from time import perf_counter
|
||||
from tqdm.auto import tqdm
|
||||
from transformers import AutoConfig, AutoTokenizer
|
||||
import torch.multiprocessing as mp
|
||||
|
||||
from nanovllm.config import Config
|
||||
from nanovllm.sampling_params import SamplingParams
|
||||
@@ -19,10 +21,24 @@ class LLMEngine:
|
||||
Sequence.block_size = config.kvcache_block_size
|
||||
config.hf_config = AutoConfig.from_pretrained(config.model)
|
||||
config.max_model_len = min(config.max_model_len, config.hf_config.max_position_embeddings)
|
||||
self.ps = []
|
||||
self.events = []
|
||||
for i in range(1, config.tensor_parallel_size):
|
||||
event = mp.Event()
|
||||
process = mp.Process(target=ModelRunner, args=(config, i, event))
|
||||
process.start()
|
||||
self.ps.append(process)
|
||||
self.events.append(event)
|
||||
self.model_runner = ModelRunner(config, 0, self.events)
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(config.model, use_fast=True)
|
||||
config.eos = self.tokenizer.eos_token_id
|
||||
self.model_runner = ModelRunner(config)
|
||||
self.scheduler = Scheduler(config)
|
||||
atexit.register(self.exit)
|
||||
|
||||
def exit(self):
|
||||
self.model_runner.call("exit")
|
||||
for p in self.ps:
|
||||
p.join()
|
||||
|
||||
def add_request(self, prompt: str | list[int], sampling_params: SamplingParams):
|
||||
if isinstance(prompt, str):
|
||||
@@ -32,7 +48,7 @@ class LLMEngine:
|
||||
|
||||
def step(self):
|
||||
seqs, is_prefill = self.scheduler.schedule()
|
||||
token_ids = self.model_runner.run(seqs, is_prefill)
|
||||
token_ids = self.model_runner.call("run", seqs, is_prefill)
|
||||
self.scheduler.postprocess(seqs, token_ids)
|
||||
outputs = [(seq.seq_id, seq.completion_token_ids) for seq in seqs if seq.is_finished]
|
||||
num_tokens = sum(len(seq) for seq in seqs) if is_prefill else -len(seqs)
|
||||
|
||||
@@ -1,4 +1,8 @@
|
||||
import pickle
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from multiprocess.synchronize import Event
|
||||
from multiprocess.shared_memory import SharedMemory
|
||||
|
||||
from nanovllm.config import Config
|
||||
from nanovllm.engine.sequence import Sequence
|
||||
@@ -11,12 +15,17 @@ from nanovllm.utils.loader import load_model
|
||||
|
||||
class ModelRunner:
|
||||
|
||||
def __init__(self, config: Config):
|
||||
def __init__(self, config: Config, rank: int, event: Event | list[Event]):
|
||||
self.config = config
|
||||
hf_config = config.hf_config
|
||||
self.block_size = config.kvcache_block_size
|
||||
self.enforce_eager = config.enforce_eager
|
||||
self.world_size = config.tensor_parallel_size
|
||||
self.rank = rank
|
||||
self.event = event
|
||||
|
||||
dist.init_process_group("nccl", "tcp://localhost:2333", world_size=self.world_size, rank=rank)
|
||||
torch.cuda.set_device(rank)
|
||||
default_dtype = torch.get_default_dtype()
|
||||
torch.set_default_dtype(hf_config.torch_dtype)
|
||||
torch.set_default_device("cuda")
|
||||
@@ -29,14 +38,66 @@ class ModelRunner:
|
||||
torch.set_default_device("cpu")
|
||||
torch.set_default_dtype(default_dtype)
|
||||
|
||||
if self.world_size > 1:
|
||||
if rank == 0:
|
||||
self.shm = SharedMemory(name="nanovllm", create=True, size=2**20)
|
||||
dist.barrier()
|
||||
else:
|
||||
dist.barrier()
|
||||
self.shm = SharedMemory(name="nanovllm")
|
||||
self.loop()
|
||||
|
||||
def exit(self):
|
||||
if self.world_size > 1:
|
||||
self.shm.close()
|
||||
if self.rank == 0:
|
||||
self.shm.unlink()
|
||||
# dist.destroy_process_group()
|
||||
|
||||
def loop(self):
|
||||
while True:
|
||||
method_name, args = self.read_shm()
|
||||
method = getattr(self, method_name, None)
|
||||
assert callable(method)
|
||||
method(*args)
|
||||
if method_name == "exit":
|
||||
break
|
||||
|
||||
def read_shm(self):
|
||||
assert self.world_size > 1 and self.rank
|
||||
self.event.wait()
|
||||
n = int.from_bytes(self.shm.buf[0:4], "little")
|
||||
method_name, *args = pickle.loads(self.shm.buf[4:n+4])
|
||||
self.event.clear()
|
||||
return method_name, args
|
||||
|
||||
def write_shm(self, method_name, *args):
|
||||
assert self.world_size > 1 and not self.rank
|
||||
data = pickle.dumps([method_name, *args])
|
||||
n = len(data)
|
||||
assert n + 4 <= self.shm.size
|
||||
self.shm.buf[0:4] = n.to_bytes(4, "little")
|
||||
self.shm.buf[4:n+4] = data
|
||||
for event in self.event:
|
||||
event.set()
|
||||
|
||||
def call(self, method_name, *args):
|
||||
assert self.rank == 0
|
||||
if self.world_size > 1:
|
||||
self.write_shm(method_name, *args)
|
||||
method = getattr(self, method_name, None)
|
||||
assert callable(method)
|
||||
return method(*args)
|
||||
|
||||
def allocate_kv_cache(self, gpu_memory_utilization):
|
||||
config = self.config
|
||||
hf_config = config.hf_config
|
||||
total, used, _ = get_gpu_memory()
|
||||
free = total * gpu_memory_utilization - used
|
||||
block_bytes = 2 * hf_config.num_hidden_layers * self.block_size * hf_config.num_key_value_heads * hf_config.head_dim * hf_config.torch_dtype.itemsize
|
||||
num_kv_heads = hf_config.num_key_value_heads // dist.get_world_size()
|
||||
block_bytes = 2 * hf_config.num_hidden_layers * self.block_size * num_kv_heads * hf_config.head_dim * hf_config.torch_dtype.itemsize
|
||||
config.num_kvcache_blocks = int(free) // block_bytes
|
||||
self.kv_cache = torch.zeros(2, hf_config.num_hidden_layers, config.num_kvcache_blocks, self.block_size, hf_config.num_key_value_heads, hf_config.head_dim)
|
||||
self.kv_cache = torch.zeros(2, hf_config.num_hidden_layers, config.num_kvcache_blocks, self.block_size, num_kv_heads, hf_config.head_dim)
|
||||
layer_id = 0
|
||||
for module in self.model.modules():
|
||||
if hasattr(module, "k_cache") and hasattr(module, "v_cache"):
|
||||
@@ -148,7 +209,7 @@ class ModelRunner:
|
||||
input_ids, positions = self.prepare_prefill(seqs) if is_prefill else self.prepare_decode(seqs)
|
||||
temperatures = self.prepare_sample(seqs)
|
||||
logits = self.run_model(input_ids, positions, is_prefill)
|
||||
token_ids = self.sampler(logits, temperatures).tolist()
|
||||
token_ids = self.sampler(logits, temperatures).tolist() if self.rank == 0 else None
|
||||
reset_context()
|
||||
return token_ids
|
||||
|
||||
|
||||
@@ -14,8 +14,6 @@ class Scheduler:
|
||||
self.block_manager = BlockManager(config.num_kvcache_blocks, config.kvcache_block_size)
|
||||
self.waiting: deque[Sequence] = deque()
|
||||
self.running: deque[Sequence] = deque()
|
||||
self.num_finished = 0
|
||||
self.num_tokens = 0
|
||||
|
||||
def is_finished(self):
|
||||
return not self.waiting and not self.running
|
||||
@@ -67,11 +65,9 @@ class Scheduler:
|
||||
self.waiting.appendleft(seq)
|
||||
|
||||
def postprocess(self, seqs: list[Sequence], token_ids: list[int]) -> list[bool]:
|
||||
self.num_tokens += len(token_ids)
|
||||
for seq, token_id in zip(seqs, token_ids):
|
||||
seq.append_token(token_id)
|
||||
if (not seq.ignore_eos and token_id == self.eos) or seq.num_completion_tokens == seq.max_tokens:
|
||||
seq.status = SequenceStatus.FINISHED
|
||||
self.block_manager.deallocate(seq)
|
||||
self.running.remove(seq)
|
||||
self.num_finished += 1
|
||||
|
||||
@@ -75,7 +75,7 @@ class Sequence:
|
||||
self.num_tokens += 1
|
||||
|
||||
def __getstate__(self):
|
||||
state = super().__getstate__()
|
||||
state = vars(self).copy()
|
||||
if self.num_completion_tokens:
|
||||
state.pop("token_ids")
|
||||
return state
|
||||
|
||||
@@ -14,8 +14,8 @@ class VocabParallelEmbedding(nn.Module):
|
||||
embedding_dim: int,
|
||||
):
|
||||
super().__init__()
|
||||
self.tp_rank = 0 # get_tensor_model_parallel_rank()
|
||||
self.tp_size = 1 # get_tensor_model_parallel_world_size()
|
||||
self.tp_rank = dist.get_rank()
|
||||
self.tp_size = dist.get_world_size()
|
||||
assert num_embeddings % self.tp_size == 0
|
||||
self.num_embeddings = num_embeddings
|
||||
self.num_embeddings_per_partition = self.num_embeddings // self.tp_size
|
||||
@@ -39,7 +39,7 @@ class VocabParallelEmbedding(nn.Module):
|
||||
x = mask * (x - self.vocab_start_idx)
|
||||
y = F.embedding(x, self.weight)
|
||||
if self.tp_size > 1:
|
||||
y = mask * y
|
||||
y = mask.unsqueeze(1) * y
|
||||
dist.all_reduce(y)
|
||||
return y
|
||||
|
||||
@@ -65,8 +65,8 @@ class ParallelLMHead(VocabParallelEmbedding):
|
||||
last_indices = context.cu_seqlens_q[1:] - 1
|
||||
x = x[last_indices].contiguous()
|
||||
logits = F.linear(x, self.weight, self.bias)
|
||||
# if self.tp_size > 1:
|
||||
# all_logits = [torch.empty_like(logits) for _ in range(self.tp_size)]
|
||||
# dist.gather(logits, all_logits, 0)
|
||||
# logits = torch.cat(all_logits, -1)
|
||||
return logits if self.tp_rank == 0 else None
|
||||
if self.tp_size > 1:
|
||||
all_logits = [torch.empty_like(logits) for _ in range(self.tp_size)] if self.tp_rank == 0 else None
|
||||
dist.gather(logits, all_logits, 0)
|
||||
logits = torch.cat(all_logits, -1) if self.tp_rank == 0 else None
|
||||
return logits
|
||||
@@ -21,8 +21,8 @@ class LinearBase(nn.Module):
|
||||
self.input_size = input_size
|
||||
self.output_size = output_size
|
||||
self.tp_dim = tp_dim
|
||||
self.tp_rank = 0 # get_tensor_model_parallel_rank()
|
||||
self.tp_size = 1 # get_tensor_model_parallel_world_size()
|
||||
self.tp_rank = dist.get_rank()
|
||||
self.tp_size = dist.get_world_size()
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
raise NotImplementedError
|
||||
@@ -65,7 +65,6 @@ class ColumnParallelLinear(LinearBase):
|
||||
self.input_size_per_partition = input_size
|
||||
self.output_size_per_partition = divide(output_size, self.tp_size)
|
||||
self.output_partition_sizes = [self.output_size_per_partition]
|
||||
# If QKV or MergedColumn, use output size of each partition.
|
||||
if hasattr(self, "output_sizes"):
|
||||
self.output_partition_sizes = [
|
||||
divide(output_size, self.tp_size)
|
||||
@@ -101,8 +100,6 @@ class MergedColumnParallelLinear(ColumnParallelLinear):
|
||||
bias: bool = False,
|
||||
):
|
||||
self.output_sizes = output_sizes
|
||||
tp_size = 1 # get_tensor_model_parallel_world_size()
|
||||
assert all(output_size % tp_size == 0 for output_size in output_sizes)
|
||||
super().__init__(input_size, sum(output_sizes), bias=bias)
|
||||
|
||||
def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor, loaded_shard_id: int):
|
||||
@@ -110,7 +107,7 @@ class MergedColumnParallelLinear(ColumnParallelLinear):
|
||||
shard_offset = sum(self.output_sizes[:loaded_shard_id]) // self.tp_size
|
||||
shard_size = self.output_sizes[loaded_shard_id] // self.tp_size
|
||||
param_data = param_data.narrow(self.tp_dim, shard_offset, shard_size)
|
||||
# loaded_weight = loaded_weight.narrow(self.tp_dim, self.tp_rank * shard_size, shard_size)
|
||||
loaded_weight = loaded_weight.chunk(self.tp_size, self.tp_dim)[self.tp_rank]
|
||||
assert param_data.size() == loaded_weight.size()
|
||||
param_data.copy_(loaded_weight)
|
||||
|
||||
@@ -131,8 +128,7 @@ class QKVParallelLinear(ColumnParallelLinear):
|
||||
if total_num_kv_heads is None:
|
||||
total_num_kv_heads = total_num_heads
|
||||
self.total_num_kv_heads = total_num_kv_heads
|
||||
# Divide the weight matrix along the last dimension.
|
||||
tp_size = 1 # get_tensor_model_parallel_world_size()
|
||||
tp_size = dist.get_world_size()
|
||||
self.num_heads = divide(self.total_num_heads, tp_size)
|
||||
self.num_kv_heads = divide(self.total_num_kv_heads, tp_size)
|
||||
input_size = self.hidden_size
|
||||
@@ -158,7 +154,7 @@ class QKVParallelLinear(ColumnParallelLinear):
|
||||
shard_size = self.num_kv_heads * self.head_size
|
||||
shard_offset = self.num_heads * self.head_size + self.num_kv_heads * self.head_size
|
||||
param_data = param_data.narrow(self.tp_dim, shard_offset, shard_size)
|
||||
# loaded_weight = loaded_weight.narrow(self.tp_dim, self.tp_rank * shard_size, shard_size)
|
||||
loaded_weight = loaded_weight.chunk(self.tp_size, self.tp_dim)[self.tp_rank]
|
||||
assert param_data.size() == loaded_weight.size()
|
||||
param_data.copy_(loaded_weight)
|
||||
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.distributed as dist
|
||||
from transformers import Qwen3Config
|
||||
|
||||
from nanovllm.layers.activation import SiluAndMul
|
||||
@@ -26,7 +27,7 @@ class Qwen3Attention(nn.Module):
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = hidden_size
|
||||
tp_size = 1 # get_tensor_model_parallel_world_size()
|
||||
tp_size = dist.get_world_size()
|
||||
self.total_num_heads = num_heads
|
||||
assert self.total_num_heads % tp_size == 0
|
||||
self.num_heads = self.total_num_heads // tp_size
|
||||
|
||||
Reference in New Issue
Block a user