[WIP] Before refactor policies.
This commit is contained in:
@@ -5,86 +5,68 @@ Provides pluggable policies for selecting which KV blocks to load
|
||||
during chunked attention with CPU offload.
|
||||
|
||||
Usage:
|
||||
from nanovllm.kvcache.sparse import SparsePolicy, PolicyContext
|
||||
from nanovllm.kvcache.sparse import VerticalSlashPolicy, QuestPolicy
|
||||
from nanovllm.kvcache.sparse import create_sparse_policy, SparsePolicyType
|
||||
|
||||
# Use built-in policy
|
||||
policy = VerticalSlashPolicy(VerticalSlashConfig())
|
||||
# Create policy using factory function
|
||||
policy = create_sparse_policy(SparsePolicyType.QUEST, topk_blocks=8)
|
||||
|
||||
# Or create custom policy
|
||||
class MyPolicy(SparsePolicy):
|
||||
supports_prefill = True
|
||||
supports_decode = True
|
||||
|
||||
def select_blocks(self, available_blocks, ctx):
|
||||
return available_blocks[:5] # Just first 5 blocks
|
||||
"""
|
||||
|
||||
from nanovllm.kvcache.sparse.policy import SparsePolicy, PolicyContext
|
||||
from nanovllm.kvcache.sparse.policy import SparsePolicy, PolicyContext, SparsePolicyType
|
||||
from nanovllm.kvcache.sparse.full_policy import FullAttentionPolicy
|
||||
from nanovllm.kvcache.sparse.vertical_slash import VerticalSlashPolicy, VerticalSlashConfig
|
||||
from nanovllm.kvcache.sparse.quest import QuestPolicy, QuestConfig, BlockMetadataManager
|
||||
from nanovllm.kvcache.sparse.streaming_llm import StreamingLLMPolicy, StreamingLLMConfig
|
||||
from nanovllm.kvcache.sparse.hybrid import HybridPolicy
|
||||
|
||||
# Built-in policy registry
|
||||
BUILTIN_SPARSE_POLICIES = {
|
||||
"full": FullAttentionPolicy,
|
||||
"vertical_slash": VerticalSlashPolicy,
|
||||
"streaming_llm": StreamingLLMPolicy,
|
||||
}
|
||||
|
||||
|
||||
def get_sparse_policy(policy_name: str, **kwargs) -> SparsePolicy:
|
||||
def create_sparse_policy(policy_type: SparsePolicyType, **kwargs) -> SparsePolicy:
|
||||
"""
|
||||
Get a sparse attention policy instance by name.
|
||||
Create a sparse policy instance from an enum type.
|
||||
|
||||
The returned policy is not yet initialized. Call policy.initialize()
|
||||
or let the framework call it during KV cache allocation.
|
||||
|
||||
Args:
|
||||
policy_name: Policy name ("full", "vertical_slash", "streaming_llm", "quest")
|
||||
**kwargs: Policy-specific configuration
|
||||
policy_type: SparsePolicyType enum value
|
||||
**kwargs: Policy-specific configuration options
|
||||
|
||||
Returns:
|
||||
SparsePolicy instance
|
||||
"""
|
||||
policy_name = policy_name.lower()
|
||||
SparsePolicy instance (not initialized)
|
||||
|
||||
if policy_name == "full":
|
||||
Example:
|
||||
policy = create_sparse_policy(SparsePolicyType.QUEST, topk_blocks=4)
|
||||
policy.initialize(num_layers=28, num_kv_heads=8, ...)
|
||||
"""
|
||||
if policy_type == SparsePolicyType.FULL:
|
||||
return FullAttentionPolicy()
|
||||
elif policy_name == "vertical_slash":
|
||||
config = VerticalSlashConfig(
|
||||
num_sink_blocks=kwargs.get("num_sink_blocks", 1),
|
||||
local_window_blocks=kwargs.get("local_window_blocks", 2),
|
||||
|
||||
elif policy_type == SparsePolicyType.QUEST:
|
||||
config = QuestConfig(
|
||||
topk_blocks=kwargs.get("topk_blocks", 8),
|
||||
threshold_blocks=kwargs.get("threshold_blocks", 4),
|
||||
include_sink_blocks=kwargs.get("include_sink_blocks", 0),
|
||||
include_recent_blocks=kwargs.get("include_recent_blocks", 0),
|
||||
)
|
||||
return VerticalSlashPolicy(config)
|
||||
elif policy_name == "streaming_llm":
|
||||
config = StreamingLLMConfig(
|
||||
num_sink_blocks=kwargs.get("num_sink_blocks", 1),
|
||||
num_recent_blocks=kwargs.get("num_recent_blocks", 3),
|
||||
)
|
||||
return StreamingLLMPolicy(config)
|
||||
elif policy_name == "quest":
|
||||
# Quest requires metadata_manager to be passed separately
|
||||
raise ValueError(
|
||||
"Quest policy requires BlockMetadataManager. "
|
||||
"Use QuestPolicy(config, metadata_manager) directly."
|
||||
)
|
||||
return QuestPolicy(config)
|
||||
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unknown sparse policy '{policy_name}'. "
|
||||
f"Available policies: {list(BUILTIN_SPARSE_POLICIES.keys())}"
|
||||
)
|
||||
raise ValueError(f"Unknown policy type: {policy_type}")
|
||||
|
||||
|
||||
__all__ = [
|
||||
"SparsePolicy",
|
||||
"PolicyContext",
|
||||
"SparsePolicyType",
|
||||
"FullAttentionPolicy",
|
||||
"VerticalSlashPolicy",
|
||||
"VerticalSlashConfig",
|
||||
"QuestPolicy",
|
||||
"QuestConfig",
|
||||
"BlockMetadataManager",
|
||||
"StreamingLLMPolicy",
|
||||
"StreamingLLMConfig",
|
||||
"HybridPolicy",
|
||||
"get_sparse_policy",
|
||||
"BUILTIN_SPARSE_POLICIES",
|
||||
"create_sparse_policy",
|
||||
]
|
||||
|
||||
@@ -22,6 +22,10 @@ class FullAttentionPolicy(SparsePolicy):
|
||||
- For short sequences where sparsity isn't beneficial
|
||||
"""
|
||||
|
||||
# Full attention supports both prefill and decode
|
||||
supports_prefill = True
|
||||
supports_decode = True
|
||||
|
||||
def select_blocks(
|
||||
self,
|
||||
available_blocks: List[int],
|
||||
|
||||
@@ -7,10 +7,17 @@ from CPU for each query chunk during chunked attention computation.
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from dataclasses import dataclass
|
||||
from enum import Enum, auto
|
||||
from typing import List, Optional, Any
|
||||
import torch
|
||||
|
||||
|
||||
class SparsePolicyType(Enum):
|
||||
"""Built-in sparse attention policy types."""
|
||||
FULL = auto() # prefill + decode
|
||||
QUEST = auto() # decode only
|
||||
|
||||
|
||||
@dataclass
|
||||
class PolicyContext:
|
||||
"""
|
||||
@@ -54,8 +61,15 @@ class SparsePolicy(ABC):
|
||||
sparse attention patterns. The policy receives context about
|
||||
the current query chunk and returns which KV blocks to load.
|
||||
|
||||
Attributes:
|
||||
supports_prefill: Whether this policy can be used for prefill phase.
|
||||
supports_decode: Whether this policy can be used for decode phase.
|
||||
|
||||
Example:
|
||||
class MySparsePolicy(SparsePolicy):
|
||||
supports_prefill = False # decode-only policy
|
||||
supports_decode = True
|
||||
|
||||
def select_blocks(self, available_blocks, ctx):
|
||||
# Load first block and last 2 blocks
|
||||
if len(available_blocks) <= 3:
|
||||
@@ -63,6 +77,34 @@ class SparsePolicy(ABC):
|
||||
return [available_blocks[0]] + available_blocks[-2:]
|
||||
"""
|
||||
|
||||
# Compatibility flags - override in subclasses
|
||||
supports_prefill: bool = True
|
||||
supports_decode: bool = True
|
||||
|
||||
def initialize(
|
||||
self,
|
||||
num_layers: int,
|
||||
num_kv_heads: int,
|
||||
head_dim: int,
|
||||
num_cpu_blocks: int,
|
||||
dtype: torch.dtype,
|
||||
) -> None:
|
||||
"""
|
||||
Initialize policy resources.
|
||||
|
||||
Called by the framework after KV cache is allocated. Override this
|
||||
to create metadata structures (e.g., BlockMetadataManager for Quest).
|
||||
Default implementation does nothing.
|
||||
|
||||
Args:
|
||||
num_layers: Number of transformer layers
|
||||
num_kv_heads: Number of KV attention heads
|
||||
head_dim: Dimension per head
|
||||
num_cpu_blocks: Number of CPU blocks allocated
|
||||
dtype: Data type for tensors
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def select_blocks(
|
||||
self,
|
||||
|
||||
@@ -147,22 +147,40 @@ class QuestPolicy(SparsePolicy):
|
||||
This upper bound is derived from the fact that for any key k in
|
||||
the block: min_k <= k <= max_k (element-wise), so the actual
|
||||
attention score is bounded by the maximum of the two extremes.
|
||||
|
||||
Note: This is a decode-only policy. For prefill, use FullAttentionPolicy.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: QuestConfig,
|
||||
metadata_manager: BlockMetadataManager,
|
||||
):
|
||||
# Quest is decode-only
|
||||
supports_prefill = False
|
||||
supports_decode = True
|
||||
|
||||
def __init__(self, config: QuestConfig):
|
||||
"""
|
||||
Initialize Quest policy.
|
||||
|
||||
Args:
|
||||
config: QuestConfig with selection parameters
|
||||
metadata_manager: BlockMetadataManager for min/max key storage
|
||||
"""
|
||||
self.config = config
|
||||
self.metadata = metadata_manager
|
||||
self.metadata: Optional[BlockMetadataManager] = None
|
||||
|
||||
def initialize(
|
||||
self,
|
||||
num_layers: int,
|
||||
num_kv_heads: int,
|
||||
head_dim: int,
|
||||
num_cpu_blocks: int,
|
||||
dtype: torch.dtype,
|
||||
) -> None:
|
||||
"""Create BlockMetadataManager for storing min/max keys."""
|
||||
self.metadata = BlockMetadataManager(
|
||||
num_blocks=num_cpu_blocks,
|
||||
num_layers=num_layers,
|
||||
num_kv_heads=num_kv_heads,
|
||||
head_dim=head_dim,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
def select_blocks(
|
||||
self,
|
||||
@@ -175,6 +193,12 @@ class QuestPolicy(SparsePolicy):
|
||||
If query is not available (some prefill scenarios), falls back
|
||||
to loading all blocks.
|
||||
"""
|
||||
if self.metadata is None:
|
||||
raise RuntimeError(
|
||||
"QuestPolicy not initialized. Call initialize() first or "
|
||||
"let the framework call it during KV cache allocation."
|
||||
)
|
||||
|
||||
n = len(available_blocks)
|
||||
|
||||
# If below threshold or no query, load all
|
||||
@@ -269,10 +293,12 @@ class QuestPolicy(SparsePolicy):
|
||||
num_valid_tokens: int,
|
||||
) -> None:
|
||||
"""Update min/max key metadata when block is offloaded."""
|
||||
if self.metadata is not None:
|
||||
self.metadata.update_metadata(cpu_block_id, layer_id, k_cache, num_valid_tokens)
|
||||
|
||||
def reset(self) -> None:
|
||||
"""Reset metadata."""
|
||||
if self.metadata is not None:
|
||||
self.metadata.reset()
|
||||
|
||||
def __repr__(self) -> str:
|
||||
|
||||
@@ -1,84 +0,0 @@
|
||||
"""
|
||||
StreamingLLM sparse attention policy.
|
||||
|
||||
Only keeps sink tokens (beginning) + recent tokens (end).
|
||||
Intermediate context is discarded. This enables infinite-length
|
||||
generation but loses intermediate context.
|
||||
|
||||
Reference: StreamingLLM paper on attention sinks.
|
||||
"""
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import List
|
||||
from .policy import SparsePolicy, PolicyContext
|
||||
|
||||
|
||||
@dataclass
|
||||
class StreamingLLMConfig:
|
||||
"""Configuration for StreamingLLMPolicy."""
|
||||
|
||||
num_sink_blocks: int = 1
|
||||
"""Number of blocks at the beginning to always include (attention sinks)."""
|
||||
|
||||
num_recent_blocks: int = 3
|
||||
"""Number of most recent blocks to include (sliding window)."""
|
||||
|
||||
|
||||
class StreamingLLMPolicy(SparsePolicy):
|
||||
"""
|
||||
StreamingLLM pattern: sink tokens + recent tokens only.
|
||||
|
||||
This is the most aggressive sparsity pattern - only keeps a small
|
||||
fixed window of context. Suitable for:
|
||||
- Very long streaming generation
|
||||
- When intermediate context can be safely discarded
|
||||
- Maximizing throughput over accuracy
|
||||
|
||||
Pattern visualization:
|
||||
```
|
||||
Blocks: [0] [1] [2] [3] [4] [5] [6] [7] [8]
|
||||
↑ × × × ↑ ↑ ↑
|
||||
sink (discarded) recent window
|
||||
```
|
||||
|
||||
Warning: This loses information from intermediate blocks!
|
||||
Use only when this trade-off is acceptable.
|
||||
"""
|
||||
|
||||
def __init__(self, config: StreamingLLMConfig = None):
|
||||
self.config = config or StreamingLLMConfig()
|
||||
|
||||
def select_blocks(
|
||||
self,
|
||||
available_blocks: List[int],
|
||||
ctx: PolicyContext,
|
||||
) -> List[int]:
|
||||
"""
|
||||
Select sink blocks + recent blocks only.
|
||||
|
||||
Intermediate blocks are not loaded (effectively discarded).
|
||||
"""
|
||||
n = len(available_blocks)
|
||||
|
||||
# If total blocks fit in sink + recent, load all
|
||||
total_keep = self.config.num_sink_blocks + self.config.num_recent_blocks
|
||||
if n <= total_keep:
|
||||
return available_blocks
|
||||
|
||||
selected_indices = set()
|
||||
|
||||
# Sink blocks (first N)
|
||||
for i in range(min(self.config.num_sink_blocks, n)):
|
||||
selected_indices.add(i)
|
||||
|
||||
# Recent blocks (last M)
|
||||
for i in range(max(0, n - self.config.num_recent_blocks), n):
|
||||
selected_indices.add(i)
|
||||
|
||||
return [available_blocks[i] for i in sorted(selected_indices)]
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return (
|
||||
f"StreamingLLMPolicy(sink={self.config.num_sink_blocks}, "
|
||||
f"recent={self.config.num_recent_blocks})"
|
||||
)
|
||||
@@ -1,95 +0,0 @@
|
||||
"""
|
||||
Vertical-Slash sparse attention policy (MInference-style).
|
||||
|
||||
Selects sink blocks (beginning of sequence) + local window blocks
|
||||
(near the current query position). This pattern captures:
|
||||
- Important initial context (system prompt, instructions)
|
||||
- Recent context (relevant for local dependencies)
|
||||
"""
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import List
|
||||
from .policy import SparsePolicy, PolicyContext
|
||||
|
||||
|
||||
@dataclass
|
||||
class VerticalSlashConfig:
|
||||
"""Configuration for VerticalSlashPolicy."""
|
||||
|
||||
num_sink_blocks: int = 1
|
||||
"""Number of blocks at the beginning to always include (sink tokens)."""
|
||||
|
||||
local_window_blocks: int = 2
|
||||
"""Number of blocks in the local window near current query position."""
|
||||
|
||||
threshold_blocks: int = 4
|
||||
"""If total blocks <= threshold, load all (no sparsity applied)."""
|
||||
|
||||
|
||||
class VerticalSlashPolicy(SparsePolicy):
|
||||
"""
|
||||
Vertical-Slash pattern: sink tokens + local window.
|
||||
|
||||
This pattern is inspired by MInference and observations that:
|
||||
1. Initial tokens (sink) often receive high attention
|
||||
2. Local context (recent tokens) is important for dependencies
|
||||
|
||||
Pattern visualization:
|
||||
```
|
||||
Blocks: [0] [1] [2] [3] [4] [5] [6] [7] [8]
|
||||
↑ ↑ ↑ ↑
|
||||
sink local window (for query at block 9)
|
||||
```
|
||||
|
||||
For prefill chunk K, the local window is blocks [K-window, K-1].
|
||||
For decode, the local window is the last N blocks.
|
||||
"""
|
||||
|
||||
def __init__(self, config: VerticalSlashConfig = None):
|
||||
self.config = config or VerticalSlashConfig()
|
||||
|
||||
def select_blocks(
|
||||
self,
|
||||
available_blocks: List[int],
|
||||
ctx: PolicyContext,
|
||||
) -> List[int]:
|
||||
"""
|
||||
Select sink blocks + local window blocks.
|
||||
|
||||
For prefill: local window is relative to current chunk position.
|
||||
For decode: local window is the most recent blocks.
|
||||
"""
|
||||
n = len(available_blocks)
|
||||
|
||||
# If below threshold, load all
|
||||
if n <= self.config.threshold_blocks:
|
||||
return available_blocks
|
||||
|
||||
selected_indices = set()
|
||||
|
||||
# Sink blocks (first N blocks)
|
||||
for i in range(min(self.config.num_sink_blocks, n)):
|
||||
selected_indices.add(i)
|
||||
|
||||
# Local window
|
||||
if ctx.is_prefill:
|
||||
# For prefill chunk K, local window is blocks [K-window, K-1]
|
||||
# (blocks before current chunk, not including current)
|
||||
window_end = min(ctx.query_chunk_idx, n)
|
||||
window_start = max(0, window_end - self.config.local_window_blocks)
|
||||
for i in range(window_start, window_end):
|
||||
selected_indices.add(i)
|
||||
else:
|
||||
# For decode, local window is the last M blocks
|
||||
for i in range(max(0, n - self.config.local_window_blocks), n):
|
||||
selected_indices.add(i)
|
||||
|
||||
# Return blocks in order (maintains sequential access pattern)
|
||||
return [available_blocks[i] for i in sorted(selected_indices)]
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return (
|
||||
f"VerticalSlashPolicy(sink={self.config.num_sink_blocks}, "
|
||||
f"window={self.config.local_window_blocks}, "
|
||||
f"threshold={self.config.threshold_blocks})"
|
||||
)
|
||||
Reference in New Issue
Block a user