[WIP] remove num_prefetch_blocks varible.

This commit is contained in:
Zijie Tian
2025-12-24 18:22:26 +08:00
parent b264de903d
commit 782437c486
10 changed files with 465 additions and 18 deletions

View File

@@ -237,7 +237,6 @@ Warmup uses a reasonable sequence length (`block_size * 2`) instead of `max_mode
| `max_num_seqs` | 512 | Max concurrent sequences | | `max_num_seqs` | 512 | Max concurrent sequences |
| `gpu_memory_utilization` | 0.9 | GPU memory fraction for KV cache | | `gpu_memory_utilization` | 0.9 | GPU memory fraction for KV cache |
| `enforce_eager` | False | Disable CUDA graphs if True | | `enforce_eager` | False | Disable CUDA graphs if True |
| `num_prefetch_blocks` | 2 | Ring buffer pipeline depth (deprecated, uses num_gpu_blocks) |
## Benchmarking ## Benchmarking

View File

@@ -109,7 +109,6 @@ def main():
max_num_batched_tokens=max_len, max_num_batched_tokens=max_len,
enable_cpu_offload=True, enable_cpu_offload=True,
num_gpu_blocks=8, # Small GPU buffer for offload testing num_gpu_blocks=8, # Small GPU buffer for offload testing
num_prefetch_blocks=4,
) )
if not args.no_sparse: if not args.no_sparse:

View File

@@ -22,7 +22,6 @@ class Config:
offload_policy: str = "lru" # "lru", "fifo", or full class path offload_policy: str = "lru" # "lru", "fifo", or full class path
num_transfer_streams: int = 4 # Number of CUDA streams for async transfers num_transfer_streams: int = 4 # Number of CUDA streams for async transfers
num_gpu_blocks: int = -1 # User-specified GPU blocks count, -1 = auto (use max available) num_gpu_blocks: int = -1 # User-specified GPU blocks count, -1 = auto (use max available)
num_prefetch_blocks: int = 2 # Number of prefetch blocks for three-region GPU buffer design
# Computed fields for offload (set in __post_init__ or by ModelRunner) # Computed fields for offload (set in __post_init__ or by ModelRunner)
num_gpu_kvcache_blocks: int = -1 num_gpu_kvcache_blocks: int = -1

View File

@@ -58,14 +58,12 @@ def create_kvcache_manager(config: "Config") -> KVCacheManager:
from nanovllm.kvcache.policies import get_policy from nanovllm.kvcache.policies import get_policy
policy = get_policy(getattr(config, 'offload_policy', 'lru')) policy = get_policy(getattr(config, 'offload_policy', 'lru'))
num_prefetch_blocks = getattr(config, 'num_prefetch_blocks', 2)
return HybridKVCacheManager( return HybridKVCacheManager(
num_gpu_slots=num_gpu_blocks, num_gpu_slots=num_gpu_blocks,
num_cpu_blocks=num_cpu_blocks, num_cpu_blocks=num_cpu_blocks,
block_size=config.kvcache_block_size, block_size=config.kvcache_block_size,
policy=policy, policy=policy,
num_prefetch_blocks=num_prefetch_blocks,
) )

View File

@@ -86,7 +86,6 @@ class HybridKVCacheManager(KVCacheManager):
num_cpu_blocks: int, num_cpu_blocks: int,
block_size: int, block_size: int,
policy: Optional[EvictionPolicy] = None, policy: Optional[EvictionPolicy] = None,
num_prefetch_blocks: int = 2,
): ):
""" """
Initialize hybrid manager with CPU-primary ring buffer design. Initialize hybrid manager with CPU-primary ring buffer design.
@@ -99,13 +98,11 @@ class HybridKVCacheManager(KVCacheManager):
num_cpu_blocks: Number of CPU pool blocks (primary storage) num_cpu_blocks: Number of CPU pool blocks (primary storage)
block_size: Tokens per block block_size: Tokens per block
policy: Eviction policy (default: LRU, used for prefix cache management) policy: Eviction policy (default: LRU, used for prefix cache management)
num_prefetch_blocks: Number of blocks for ring buffer pipeline (deprecated, ring_slots = num_gpu_slots)
""" """
self._block_size = block_size self._block_size = block_size
self.num_gpu_slots = num_gpu_slots self.num_gpu_slots = num_gpu_slots
self.num_cpu_blocks = num_cpu_blocks self.num_cpu_blocks = num_cpu_blocks
self.total_blocks = num_gpu_slots + num_cpu_blocks self.total_blocks = num_gpu_slots + num_cpu_blocks
self.num_prefetch_blocks = num_prefetch_blocks # Ring buffer design parameter (deprecated)
# Eviction policy # Eviction policy
self.policy = policy or LRUPolicy() self.policy = policy or LRUPolicy()
@@ -170,7 +167,6 @@ class HybridKVCacheManager(KVCacheManager):
num_kv_heads=num_kv_heads, num_kv_heads=num_kv_heads,
head_dim=head_dim, head_dim=head_dim,
dtype=dtype, dtype=dtype,
num_prefetch_blocks=self.num_prefetch_blocks,
) )
def get_layer_cache(self, layer_id: int) -> Tuple[Tensor, Tensor]: def get_layer_cache(self, layer_id: int) -> Tuple[Tensor, Tensor]:

View File

@@ -53,7 +53,6 @@ class OffloadEngine:
head_dim: int, head_dim: int,
dtype: torch.dtype = torch.float16, dtype: torch.dtype = torch.float16,
num_streams: int = 4, num_streams: int = 4,
num_prefetch_blocks: int = 2,
): ):
self.num_layers = num_layers self.num_layers = num_layers
self.num_gpu_blocks = num_gpu_blocks self.num_gpu_blocks = num_gpu_blocks
@@ -82,8 +81,6 @@ class OffloadEngine:
self.decode_load_slots = list(range(1, num_gpu_blocks)) self.decode_load_slots = list(range(1, num_gpu_blocks))
self.num_decode_load_slots = len(self.decode_load_slots) self.num_decode_load_slots = len(self.decode_load_slots)
# Keep num_prefetch_blocks for compatibility (used as chunk size for loading)
self.num_prefetch_blocks = num_prefetch_blocks
self.num_gpu_slots = num_gpu_blocks # alias self.num_gpu_slots = num_gpu_blocks # alias
logger.info(f"Unified Ring Buffer: {self.num_ring_slots} slots total") logger.info(f"Unified Ring Buffer: {self.num_ring_slots} slots total")

View File

@@ -378,9 +378,9 @@ class Attention(nn.Module):
offload_engine = kvcache_manager.offload_engine offload_engine = kvcache_manager.offload_engine
# Use prefetch_size as chunk size for double buffering # Chunk size = capacity of each double buffer region (compute/prefetch)
# This ensures both Compute and Prefetch regions can hold a full chunk # Each region uses half of decode_load_slots
chunk_size = offload_engine.num_prefetch_blocks chunk_size = max(1, len(offload_engine.decode_load_slots) // 2)
num_chunks = (len(cpu_block_table) + chunk_size - 1) // chunk_size num_chunks = (len(cpu_block_table) + chunk_size - 1) // chunk_size
o_acc = None o_acc = None

View File

@@ -0,0 +1,169 @@
"""
Test script for chunked attention correctness.
Validates that chunked prefill using flash_attn_with_lse + merge_attention_outputs
produces the same result as full flash_attn_varlen_func.
Scenario: Simulating chunked prefill where we process query chunk by chunk.
For each query chunk i:
- KV contains all tokens from chunk 0 to chunk i
- Previous KV chunks (0 to i-1): full attention (no causal mask)
- Current KV chunk (i): causal attention (diagonal block)
"""
import torch
from flash_attn.flash_attn_interface import flash_attn_varlen_func, flash_attn_func
from nanovllm.kvcache.chunked_attention import flash_attn_with_lse, merge_attention_outputs
# ============================================================
# Utility Functions
# ============================================================
def compute_chunked_prefill_for_chunk(
q_chunk: torch.Tensor,
kv_chunks: list,
current_chunk_idx: int,
) -> torch.Tensor:
"""
Compute attention for a single query chunk against all KV chunks up to current.
This simulates chunked prefill for query chunk `current_chunk_idx`:
- KV chunks 0 to current_chunk_idx-1: full attention (all previous tokens visible)
- KV chunk current_chunk_idx: causal attention (diagonal block)
Args:
q_chunk: [batch, chunk_size, nheads, headdim] - current query chunk
kv_chunks: List of (k, v) tuples, each [batch, chunk_size, nheads, headdim]
current_chunk_idx: Index of the current chunk being processed
Returns:
out: [batch, chunk_size, nheads, headdim]
"""
accumulated_o = None
accumulated_lse = None
for i in range(current_chunk_idx + 1):
k_chunk, v_chunk = kv_chunks[i]
# Previous chunks: no causal mask (all tokens visible)
# Current chunk (diagonal): causal mask
is_diagonal = (i == current_chunk_idx)
chunk_o, chunk_lse = flash_attn_with_lse(
q_chunk, k_chunk, v_chunk, causal=is_diagonal
)
if accumulated_o is None:
accumulated_o = chunk_o
accumulated_lse = chunk_lse
else:
accumulated_o, accumulated_lse = merge_attention_outputs(
accumulated_o, accumulated_lse,
chunk_o, chunk_lse
)
return accumulated_o
def compute_reference_causal(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
) -> torch.Tensor:
"""
Compute reference causal attention using flash_attn_func.
Args:
q, k, v: [batch, seqlen, nheads, headdim]
Returns:
out: [batch, seqlen, nheads, headdim]
"""
return flash_attn_func(q, k, v, causal=True)
# ============================================================
# Main Test Script
# ============================================================
torch.manual_seed(42)
# Test configurations: (batch, num_chunks, chunk_size, nheads, headdim)
TEST_CASES = [
(1, 4, 256, 8, 128),
(1, 4, 512, 8, 128),
(1, 8, 512, 8, 128),
(1, 4, 1024, 8, 128),
(1, 4, 1024, 32, 128), # More heads
(1, 8, 256, 8, 64), # Smaller head dim
]
DTYPES = [torch.float16, torch.bfloat16]
print("=" * 80)
print("Test: Chunked Prefill Attention vs Reference (flash_attn_func causal)")
print("=" * 80)
print("Simulating chunked prefill: Q chunk attends to all KV chunks up to current")
print(" - Previous KV chunks: full attention (no causal mask)")
print(" - Current KV chunk (diagonal): causal attention")
print()
all_passed = True
for dtype in DTYPES:
print(f"--- dtype: {dtype} ---")
for batch, num_chunks, chunk_size, nheads, headdim in TEST_CASES:
seqlen = num_chunks * chunk_size
# Generate full Q, K, V
q_full = torch.randn(batch, seqlen, nheads, headdim, device="cuda", dtype=dtype)
k_full = torch.randn(batch, seqlen, nheads, headdim, device="cuda", dtype=dtype)
v_full = torch.randn(batch, seqlen, nheads, headdim, device="cuda", dtype=dtype)
# Reference: full causal attention
out_ref = compute_reference_causal(q_full, k_full, v_full)
# Split into chunks
q_chunks = [q_full[:, i*chunk_size:(i+1)*chunk_size] for i in range(num_chunks)]
kv_chunks = [
(k_full[:, i*chunk_size:(i+1)*chunk_size],
v_full[:, i*chunk_size:(i+1)*chunk_size])
for i in range(num_chunks)
]
# Compute chunked prefill for each query chunk
out_chunks = []
for chunk_idx in range(num_chunks):
chunk_out = compute_chunked_prefill_for_chunk(
q_chunks[chunk_idx],
kv_chunks,
chunk_idx,
)
out_chunks.append(chunk_out)
# Concatenate chunked outputs
out_chunked = torch.cat(out_chunks, dim=1)
# Compare
diff = (out_ref - out_chunked).abs()
max_diff = diff.max().item()
mean_diff = diff.mean().item()
# Tolerance: fp16/bf16 have limited precision
tol = 1e-2
passed = max_diff < tol
all_passed = all_passed and passed
status = "PASS" if passed else "FAIL"
print(
f"[{status}] seqlen={seqlen:5d} chunks={num_chunks} "
f"chunk_size={chunk_size:4d} heads={nheads:2d} dim={headdim:3d} "
f"max_diff={max_diff:.6f} mean_diff={mean_diff:.8f}"
)
print()
print("=" * 80)
assert all_passed, "Some tests failed!"
print("test_chunked_attention: PASSED")

View File

@@ -5,17 +5,20 @@ Demonstrates: LLM initialization, prefill execution with CPU offload enabled.
""" """
import os import os
os.environ["NANOVLLM_LOG_LEVEL"] = "DEBUG"
from random import randint, seed from random import randint, seed
from nanovllm import LLM, SamplingParams from nanovllm import LLM, SamplingParams
# ============================================================ # ============================================================
# Configuration # Configuration
# ============================================================ # ============================================================
MODEL_PATH = os.path.expanduser("~/models/Qwen3-0.6B/") MODEL_PATH = os.path.expanduser("~/models/Qwen3-0.6B/")
MAX_MODEL_LEN = 8192 MAX_MODEL_LEN = 32 * 1024
NUM_GPU_BLOCKS = 4 NUM_GPU_BLOCKS = 2
INPUT_LEN = 4096 INPUT_LEN = 16 * 1024
# ============================================================ # ============================================================
# Main Test Script # Main Test Script
@@ -28,6 +31,7 @@ llm = LLM(
max_model_len=MAX_MODEL_LEN, max_model_len=MAX_MODEL_LEN,
max_num_batched_tokens=MAX_MODEL_LEN, max_num_batched_tokens=MAX_MODEL_LEN,
enable_cpu_offload=True, enable_cpu_offload=True,
kvcache_block_size=1024,
num_gpu_blocks=NUM_GPU_BLOCKS, num_gpu_blocks=NUM_GPU_BLOCKS,
) )

286
tests/test_sim.py Normal file
View File

@@ -0,0 +1,286 @@
"""
Chunked Prefill + KV Cache Offload Simulation v2
改进:
1. 简化日志输出
2. 添加reduce时间
3. 计算必须等待KV load完成
"""
import threading
import time
from dataclasses import dataclass
from typing import Optional
from concurrent.futures import ThreadPoolExecutor, Future
# ============== 配置参数 ==============
NUM_CHUNKS = 8
GPU_SLOTS = 4
# 模拟时间 (秒)
TIME_COMPUTE_BLOCK = 0.10 # 计算一个attention block
TIME_REDUCE = 0.03 # 两个partial result做一次reduce
TIME_TRANSFER = 0.08 # 传输一个KV cache
TIME_PROJ = 0.02 # projection生成KV
# ============== 全局时间基准 ==============
START_TIME = None
def now() -> float:
"""返回相对开始的时间(ms)"""
return (time.time() - START_TIME) * 1000
def log_compute(msg: str):
"""计算队列日志(无缩进)"""
print(f"[{now():7.1f}ms] [COMPUTE] {msg}")
def log_transfer(msg: str):
"""传输队列日志(缩进)"""
print(f"[{now():7.1f}ms] [TRANSFER] {msg}")
def log_info(msg: str):
"""一般信息"""
print(f"[{now():7.1f}ms] {msg}")
# ============== GPU Slot管理 ==============
class GPUSlots:
def __init__(self, num_slots: int):
self.slots = [None] * num_slots # slot_id -> kv_idx
self.kv_to_slot = {} # kv_idx -> slot_id
self.lock = threading.Lock()
# KV ready events: kv_idx -> Event
self.kv_ready = {}
def alloc(self, kv_idx: int) -> int:
with self.lock:
for sid, val in enumerate(self.slots):
if val is None:
self.slots[sid] = kv_idx
self.kv_to_slot[kv_idx] = sid
# 创建ready event
if kv_idx not in self.kv_ready:
self.kv_ready[kv_idx] = threading.Event()
return sid
raise RuntimeError(f"No free slot for KV{kv_idx}")
def free(self, slot_id: int):
with self.lock:
kv_idx = self.slots[slot_id]
if kv_idx is not None:
del self.kv_to_slot[kv_idx]
# 清除event
if kv_idx in self.kv_ready:
del self.kv_ready[kv_idx]
self.slots[slot_id] = None
def free_kv(self, kv_idx: int):
with self.lock:
if kv_idx in self.kv_to_slot:
sid = self.kv_to_slot[kv_idx]
self.slots[sid] = None
del self.kv_to_slot[kv_idx]
if kv_idx in self.kv_ready:
del self.kv_ready[kv_idx]
def mark_ready(self, kv_idx: int):
"""标记KV已就绪load完成或proj完成"""
with self.lock:
if kv_idx in self.kv_ready:
self.kv_ready[kv_idx].set()
def wait_ready(self, kv_idx: int):
"""等待KV就绪"""
with self.lock:
event = self.kv_ready.get(kv_idx)
if event:
event.wait()
def has_kv(self, kv_idx: int) -> bool:
with self.lock:
return kv_idx in self.kv_to_slot
def state(self) -> str:
with self.lock:
return "[" + "][".join(
f"KV{v}" if v is not None else "----"
for v in self.slots
) + "]"
# ============== 操作执行 ==============
class Executor:
def __init__(self, gpu: GPUSlots):
self.gpu = gpu
self.compute_pool = ThreadPoolExecutor(max_workers=1, thread_name_prefix="Compute")
self.transfer_pool = ThreadPoolExecutor(max_workers=1, thread_name_prefix="Transfer")
def proj_kv(self, q_idx: int) -> Future:
"""Projection生成KV返回Future"""
def task():
log_compute(f"PROJ Q{q_idx}->KV{q_idx} START")
time.sleep(TIME_PROJ)
slot_id = self.gpu.alloc(q_idx)
self.gpu.mark_ready(q_idx) # proj完成KV立即可用
log_compute(f"PROJ Q{q_idx}->KV{q_idx} END slot={slot_id} | {self.gpu.state()}")
return slot_id
return self.compute_pool.submit(task)
def compute_attn(self, q_idx: int, kv_indices: list) -> Future:
"""计算attention block会等待所有KV就绪"""
def task():
# 等待所有需要的KV就绪
for kv_idx in kv_indices:
self.gpu.wait_ready(kv_idx)
kv_str = ",".join(map(str, kv_indices))
log_compute(f"ATTN Q{q_idx}*KV[{kv_str}] START")
time.sleep(TIME_COMPUTE_BLOCK * len(kv_indices))
log_compute(f"ATTN Q{q_idx}*KV[{kv_str}] END")
return (q_idx, kv_indices)
return self.compute_pool.submit(task)
def reduce(self, q_idx: int, num_partials: int) -> Future:
"""Online softmax reduce多个partial结果"""
def task():
if num_partials <= 1:
return
# n个partial需要n-1次两两reduce
num_reduces = num_partials - 1
log_compute(f"REDUCE Q{q_idx} ({num_partials} partials) START")
time.sleep(TIME_REDUCE * num_reduces)
log_compute(f"REDUCE Q{q_idx} END")
return self.compute_pool.submit(task)
def load_kv(self, kv_idx: int) -> Future:
"""从CPU load KV到GPU"""
def task():
if self.gpu.has_kv(kv_idx):
log_transfer(f"LOAD KV{kv_idx} SKIP (already on GPU)")
return kv_idx
slot_id = self.gpu.alloc(kv_idx)
log_transfer(f"LOAD KV{kv_idx} START -> slot{slot_id}")
time.sleep(TIME_TRANSFER)
self.gpu.mark_ready(kv_idx) # load完成标记就绪
log_transfer(f"LOAD KV{kv_idx} END | {self.gpu.state()}")
return kv_idx
return self.transfer_pool.submit(task)
def offload_kv(self, kv_idx: int) -> Future:
"""从GPU offload KV到CPU"""
def task():
log_transfer(f"OFFLOAD KV{kv_idx} START")
time.sleep(TIME_TRANSFER)
self.gpu.free_kv(kv_idx)
log_transfer(f"OFFLOAD KV{kv_idx} END | {self.gpu.state()}")
return kv_idx
return self.transfer_pool.submit(task)
def shutdown(self):
self.compute_pool.shutdown(wait=True)
self.transfer_pool.shutdown(wait=True)
# ============== 调度器 ==============
def schedule_query(exe: Executor, q_idx: int):
"""调度单个Query的处理"""
print(f"\n{'='*50}")
log_info(f"===== Query {q_idx} START =====")
hist_kv = list(range(q_idx)) # 历史KV: 0 ~ q_idx-1
num_partials = 0
# Phase 1: Projection生成当前KV
proj_fut = exe.proj_kv(q_idx)
proj_fut.result() # 等待完成
# Phase 2: 对角块计算 + 同时prefetch历史KV
# 启动对角块计算
diag_fut = exe.compute_attn(q_idx, [q_idx])
num_partials += 1
# 同时prefetch历史KV (最多3个slot可用)
prefetch_slots = min(len(hist_kv), GPU_SLOTS - 1)
prefetch_kv = hist_kv[:prefetch_slots]
prefetch_futs = [exe.load_kv(kv) for kv in prefetch_kv]
# 等待对角块完成
diag_fut.result()
# Phase 3: Offload当前KV释放slot
offload_fut = exe.offload_kv(q_idx)
# 等待prefetch完成然后计算这批历史KV
for f in prefetch_futs:
f.result()
if prefetch_kv:
hist_fut = exe.compute_attn(q_idx, prefetch_kv)
num_partials += 1
else:
hist_fut = None
# 等待offload完成
offload_fut.result()
# Phase 4: 处理剩余历史KV
remaining_kv = hist_kv[prefetch_slots:]
computed_kv = prefetch_kv.copy()
while remaining_kv:
# 等待上一批计算完成
if hist_fut:
hist_fut.result()
# 释放已计算的KV
for kv in computed_kv:
exe.gpu.free_kv(kv)
# Load下一批
batch_size = min(len(remaining_kv), GPU_SLOTS)
batch_kv = remaining_kv[:batch_size]
remaining_kv = remaining_kv[batch_size:]
load_futs = [exe.load_kv(kv) for kv in batch_kv]
for f in load_futs:
f.result()
# 计算这批
hist_fut = exe.compute_attn(q_idx, batch_kv)
num_partials += 1
computed_kv = batch_kv
# 等待最后一批计算完成
if hist_fut:
hist_fut.result()
# 清理GPU
for kv in computed_kv:
exe.gpu.free_kv(kv)
# Phase 5: Reduce所有partial results
reduce_fut = exe.reduce(q_idx, num_partials)
reduce_fut.result()
log_info(f"===== Query {q_idx} END =====")
def main():
global START_TIME
START_TIME = time.time()
print("Chunked Prefill + KV Cache Offload Simulation v2")
print(f"Config: {NUM_CHUNKS} chunks, {GPU_SLOTS} GPU slots")
print(f"Time: compute={TIME_COMPUTE_BLOCK}s, transfer={TIME_TRANSFER}s, reduce={TIME_REDUCE}s")
gpu = GPUSlots(GPU_SLOTS)
exe = Executor(gpu)
try:
for q_idx in range(NUM_CHUNKS):
schedule_query(exe, q_idx)
print(f"\n{'='*50}")
log_info(f"ALL DONE! Total: {now():.1f}ms")
finally:
exe.shutdown()
if __name__ == "__main__":
main()