[opt] optimize nanovllm performance compareable with vllm.
This commit is contained in:
@@ -1,13 +1,21 @@
|
||||
"""
|
||||
Test Attention layer with KV cache offload in isolation.
|
||||
Test Attention layer with KV cache offload - N-way Pipeline.
|
||||
|
||||
This test demonstrates how to use Attention + HybridKVCacheManager directly
|
||||
without requiring full LLMEngine/ModelRunner setup.
|
||||
This test demonstrates and verifies the N-way pipeline with:
|
||||
- Per-slot transfer streams for parallel H2D
|
||||
- Dedicated compute stream (avoids CUDA default stream implicit sync)
|
||||
- Pre-load phase + main loop with immediate slot reuse
|
||||
|
||||
Key difference from previous test:
|
||||
- We first pre-fill many chunks to CPU cache
|
||||
- Then simulate processing a new chunk that loads ALL previous blocks
|
||||
- This exercises the full N-way pipeline with many blocks in flight
|
||||
"""
|
||||
|
||||
import torch
|
||||
from nanovllm.layers.attention import Attention
|
||||
from nanovllm.kvcache.hybrid_manager import HybridKVCacheManager
|
||||
from nanovllm.kvcache.chunked_attention import flash_attn_with_lse, merge_attention_outputs
|
||||
from nanovllm.engine.sequence import Sequence
|
||||
from nanovllm.utils.context import set_context, reset_context
|
||||
|
||||
@@ -16,45 +24,40 @@ from nanovllm.utils.context import set_context, reset_context
|
||||
# Configuration
|
||||
# ============================================================
|
||||
|
||||
NUM_LAYERS = 8 # Multi-layer for realistic profiling
|
||||
NUM_LAYERS = 8
|
||||
NUM_HEADS = 8
|
||||
NUM_KV_HEADS = 8
|
||||
HEAD_DIM = 64
|
||||
BLOCK_SIZE = 1024 # tokens per block
|
||||
CHUNK_SIZE = 1024 # tokens per chunk (same as block for simplicity)
|
||||
BLOCK_SIZE = 1024
|
||||
CHUNK_SIZE = 1024
|
||||
|
||||
NUM_GPU_SLOTS = 4
|
||||
NUM_CPU_BLOCKS = 16
|
||||
NUM_GPU_SLOTS = 6 # N-way pipeline with 6 slots
|
||||
NUM_CPU_BLOCKS = 16 # Many blocks to load from CPU
|
||||
|
||||
DTYPE = torch.float16
|
||||
DTYPE = torch.bfloat16
|
||||
DEVICE = "cuda"
|
||||
|
||||
|
||||
# ============================================================
|
||||
# Setup: Create Manager and Attention Layers
|
||||
# Setup
|
||||
# ============================================================
|
||||
|
||||
def create_manager():
|
||||
"""Create and initialize HybridKVCacheManager with OffloadEngine."""
|
||||
manager = HybridKVCacheManager(
|
||||
num_gpu_slots=NUM_GPU_SLOTS,
|
||||
num_cpu_blocks=NUM_CPU_BLOCKS,
|
||||
block_size=BLOCK_SIZE,
|
||||
)
|
||||
|
||||
# Initialize offload engine (this creates k_cache_gpu/cpu, v_cache_gpu/cpu)
|
||||
manager.allocate_cache(
|
||||
num_layers=NUM_LAYERS,
|
||||
num_kv_heads=NUM_KV_HEADS,
|
||||
head_dim=HEAD_DIM,
|
||||
dtype=DTYPE,
|
||||
)
|
||||
|
||||
return manager
|
||||
|
||||
|
||||
def create_attention_layers(manager):
|
||||
"""Create attention layers and bind KV cache."""
|
||||
layers = []
|
||||
for layer_id in range(NUM_LAYERS):
|
||||
attn = Attention(
|
||||
@@ -64,89 +67,145 @@ def create_attention_layers(manager):
|
||||
num_kv_heads=NUM_KV_HEADS,
|
||||
)
|
||||
attn.layer_id = layer_id
|
||||
|
||||
# Bind KV cache from manager
|
||||
k_cache, v_cache = manager.get_layer_cache(layer_id)
|
||||
attn.k_cache = k_cache
|
||||
attn.v_cache = v_cache
|
||||
|
||||
layers.append(attn.to(DEVICE))
|
||||
|
||||
return layers
|
||||
|
||||
|
||||
def create_test_sequence(manager, num_chunks=3):
|
||||
"""Create a test sequence and allocate blocks."""
|
||||
total_tokens = num_chunks * CHUNK_SIZE
|
||||
# ============================================================
|
||||
# Pre-fill CPU cache with random data
|
||||
# ============================================================
|
||||
|
||||
# Sequence only takes token_ids
|
||||
seq = Sequence(token_ids=list(range(total_tokens)))
|
||||
def prefill_cpu_cache(manager, num_blocks):
|
||||
"""
|
||||
Fill CPU cache with random KV data for num_blocks blocks.
|
||||
This simulates having already processed many chunks.
|
||||
"""
|
||||
offload_engine = manager.offload_engine
|
||||
|
||||
# Set block_size for this test
|
||||
seq.block_size = BLOCK_SIZE
|
||||
for block_id in range(num_blocks):
|
||||
# Generate random KV data for all layers
|
||||
for layer_id in range(NUM_LAYERS):
|
||||
k_data = torch.randn(
|
||||
BLOCK_SIZE, NUM_KV_HEADS, HEAD_DIM,
|
||||
dtype=DTYPE, device=DEVICE
|
||||
)
|
||||
v_data = torch.randn(
|
||||
BLOCK_SIZE, NUM_KV_HEADS, HEAD_DIM,
|
||||
dtype=DTYPE, device=DEVICE
|
||||
)
|
||||
|
||||
# Allocate blocks (will be on CPU in CPU-primary mode)
|
||||
manager.allocate(seq)
|
||||
# Copy to CPU cache
|
||||
offload_engine.k_cache_cpu[layer_id, block_id].copy_(k_data)
|
||||
offload_engine.v_cache_cpu[layer_id, block_id].copy_(v_data)
|
||||
|
||||
return seq
|
||||
return list(range(num_blocks))
|
||||
|
||||
|
||||
# ============================================================
|
||||
# Chunked Prefill Simulation
|
||||
# Simulate N-way Pipeline (mirrors attention.py logic)
|
||||
# ============================================================
|
||||
|
||||
def simulate_chunk_forward(
|
||||
layers,
|
||||
manager,
|
||||
seq,
|
||||
chunk_idx,
|
||||
chunk_size,
|
||||
def simulate_nway_pipeline(
|
||||
layer_id: int,
|
||||
q_batched: torch.Tensor,
|
||||
cpu_block_table: list,
|
||||
load_slots: list,
|
||||
offload_engine,
|
||||
scale: float,
|
||||
):
|
||||
"""
|
||||
Simulate forward pass for one chunk through all layers.
|
||||
|
||||
Returns:
|
||||
output: Final layer attention output
|
||||
Simulate N-way pipeline for a single layer.
|
||||
This mirrors the logic in Attention._ring_buffer_pipeline_load().
|
||||
"""
|
||||
# Generate random Q, K, V for this chunk
|
||||
hidden = torch.randn(chunk_size, NUM_HEADS, HEAD_DIM, dtype=DTYPE, device=DEVICE)
|
||||
num_blocks = len(cpu_block_table)
|
||||
num_slots = len(load_slots)
|
||||
|
||||
# Build slot_mapping: maps token positions to GPU slots
|
||||
write_slot = manager.offload_engine.get_write_slot_for_prefill(chunk_idx)
|
||||
slot_mapping = torch.full((chunk_size,), write_slot * BLOCK_SIZE, dtype=torch.long, device=DEVICE)
|
||||
slot_mapping += torch.arange(chunk_size, device=DEVICE)
|
||||
o_acc, lse_acc = None, None
|
||||
|
||||
# Build cu_seqlens for flash attention
|
||||
cu_seqlens = torch.tensor([0, chunk_size], dtype=torch.int32, device=DEVICE)
|
||||
# Phase 1: Pre-load up to num_slots blocks
|
||||
num_preload = min(num_slots, num_blocks)
|
||||
torch.cuda.nvtx.range_push(f"Phase1_Preload: L{layer_id}")
|
||||
for i in range(num_preload):
|
||||
offload_engine.load_to_slot_layer(load_slots[i], layer_id, cpu_block_table[i])
|
||||
torch.cuda.nvtx.range_pop()
|
||||
|
||||
# Set context for this chunk
|
||||
set_context(
|
||||
is_prefill=True,
|
||||
is_chunked_prefill=True,
|
||||
cu_seqlens_q=cu_seqlens,
|
||||
cu_seqlens_k=cu_seqlens,
|
||||
max_seqlen_q=chunk_size,
|
||||
max_seqlen_k=chunk_size,
|
||||
slot_mapping=slot_mapping,
|
||||
kvcache_manager=manager,
|
||||
chunked_seq=seq,
|
||||
current_chunk_idx=chunk_idx,
|
||||
)
|
||||
# Phase 2: Main loop with compute_stream
|
||||
compute_stream = offload_engine.compute_stream
|
||||
|
||||
# Forward through all layers
|
||||
output = hidden
|
||||
for block_idx in range(num_blocks):
|
||||
torch.cuda.nvtx.range_push(f"Block: L{layer_id} B{block_idx}")
|
||||
|
||||
current_slot = load_slots[block_idx % num_slots]
|
||||
|
||||
# Wait for transfer
|
||||
offload_engine.wait_slot_layer(current_slot, layer_id)
|
||||
|
||||
# Compute on dedicated stream
|
||||
with torch.cuda.stream(compute_stream):
|
||||
torch.cuda.nvtx.range_push(f"FlashAttn: L{layer_id} B{block_idx}")
|
||||
prev_k, prev_v = offload_engine.get_kv_for_slot(current_slot, layer_id)
|
||||
prev_o, prev_lse = flash_attn_with_lse(
|
||||
q_batched, prev_k, prev_v,
|
||||
softmax_scale=scale,
|
||||
causal=False,
|
||||
)
|
||||
torch.cuda.nvtx.range_pop()
|
||||
offload_engine.record_slot_compute_done(current_slot, layer_id)
|
||||
|
||||
# Start next transfer (reuse current_slot)
|
||||
next_block_idx = block_idx + num_slots
|
||||
if next_block_idx < num_blocks:
|
||||
offload_engine.load_to_slot_layer(
|
||||
current_slot, layer_id, cpu_block_table[next_block_idx]
|
||||
)
|
||||
|
||||
# Merge
|
||||
with torch.cuda.stream(compute_stream):
|
||||
if o_acc is None:
|
||||
o_acc, lse_acc = prev_o, prev_lse
|
||||
else:
|
||||
o_acc, lse_acc = merge_attention_outputs(o_acc, lse_acc, prev_o, prev_lse)
|
||||
|
||||
torch.cuda.nvtx.range_pop()
|
||||
|
||||
return o_acc, lse_acc
|
||||
|
||||
|
||||
def simulate_full_forward(layers, manager, cpu_block_table, chunk_size):
|
||||
"""
|
||||
Simulate forward pass through all layers, loading previous blocks from CPU.
|
||||
This is the key test: many blocks loaded via N-way pipeline.
|
||||
"""
|
||||
offload_engine = manager.offload_engine
|
||||
|
||||
# Current chunk index (we're processing the "next" chunk after all prefilled ones)
|
||||
current_chunk_idx = len(cpu_block_table)
|
||||
write_slot = offload_engine.get_write_slot_for_prefill(current_chunk_idx)
|
||||
load_slots = offload_engine.get_load_slots_for_prefill(write_slot)
|
||||
|
||||
# Random query for attention
|
||||
q = torch.randn(1, chunk_size, NUM_HEADS, HEAD_DIM, dtype=DTYPE, device=DEVICE)
|
||||
|
||||
outputs = []
|
||||
for layer in layers:
|
||||
k = torch.randn(chunk_size, NUM_KV_HEADS, HEAD_DIM, dtype=DTYPE, device=DEVICE)
|
||||
v = torch.randn(chunk_size, NUM_KV_HEADS, HEAD_DIM, dtype=DTYPE, device=DEVICE)
|
||||
output = layer.forward(output, k, v)
|
||||
torch.cuda.nvtx.range_push(f"Layer: {layer.layer_id}")
|
||||
|
||||
# Offload current chunk to CPU
|
||||
logical_id = seq.block_table[chunk_idx]
|
||||
cpu_block_id = manager.logical_blocks[logical_id].cpu_block_id
|
||||
manager.offload_engine.offload_slot_to_cpu(write_slot, cpu_block_id)
|
||||
manager.prefilled_blocks.add(logical_id)
|
||||
o_acc, lse_acc = simulate_nway_pipeline(
|
||||
layer.layer_id,
|
||||
q,
|
||||
cpu_block_table,
|
||||
load_slots,
|
||||
offload_engine,
|
||||
layer.scale,
|
||||
)
|
||||
|
||||
return output
|
||||
outputs.append(o_acc)
|
||||
torch.cuda.nvtx.range_pop()
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
# ============================================================
|
||||
@@ -154,64 +213,81 @@ def simulate_chunk_forward(
|
||||
# ============================================================
|
||||
|
||||
print("=" * 60)
|
||||
print("Test: Attention Layer with KV Cache Offload")
|
||||
print("Test: N-way Pipeline with CPU Offload")
|
||||
print("=" * 60)
|
||||
|
||||
# 1. Setup
|
||||
print("\n[1] Creating manager and attention layers...")
|
||||
manager = create_manager()
|
||||
layers = create_attention_layers(manager)
|
||||
print(f" - Manager: {NUM_GPU_SLOTS} GPU slots, {NUM_CPU_BLOCKS} CPU blocks")
|
||||
print(f" - Layers: {NUM_LAYERS} layers, {NUM_HEADS} heads, {HEAD_DIM} head_dim")
|
||||
print(f" - OffloadEngine initialized: {manager.offload_engine is not None}")
|
||||
offload_engine = manager.offload_engine
|
||||
|
||||
# 2. Setup
|
||||
print("\n[2] Test configuration...")
|
||||
NUM_CHUNKS = NUM_CPU_BLOCKS # Use all CPU blocks
|
||||
print(f" - Total tokens: {NUM_CHUNKS * CHUNK_SIZE}")
|
||||
print(f" - Chunks: {NUM_CHUNKS}")
|
||||
print(f" - GPU slots: {NUM_GPU_SLOTS}")
|
||||
print(f" - CPU blocks: {NUM_CPU_BLOCKS}")
|
||||
print(f" - Per-slot streams: {len(offload_engine.slot_transfer_streams)}")
|
||||
print(f" - Compute stream: {offload_engine.compute_stream}")
|
||||
|
||||
# 3. Warmup runs
|
||||
print(f"\n[3] Warmup runs (3 iterations)...")
|
||||
for warmup_iter in range(3):
|
||||
manager.prefilled_blocks.clear()
|
||||
seq = create_test_sequence(manager, num_chunks=NUM_CHUNKS)
|
||||
# 2. Pre-fill CPU cache
|
||||
NUM_PREV_BLOCKS = 12 # Many blocks to load via N-way pipeline
|
||||
print(f"\n[2] Pre-filling {NUM_PREV_BLOCKS} blocks to CPU cache...")
|
||||
cpu_block_table = prefill_cpu_cache(manager, NUM_PREV_BLOCKS)
|
||||
print(f" - CPU blocks filled: {cpu_block_table}")
|
||||
|
||||
for chunk_idx in range(NUM_CHUNKS):
|
||||
write_slot = manager.offload_engine.get_write_slot_for_prefill(chunk_idx)
|
||||
output = simulate_chunk_forward(layers, manager, seq, chunk_idx, CHUNK_SIZE)
|
||||
# 3. Verify pipeline configuration
|
||||
current_chunk_idx = NUM_PREV_BLOCKS
|
||||
write_slot = offload_engine.get_write_slot_for_prefill(current_chunk_idx)
|
||||
load_slots = offload_engine.get_load_slots_for_prefill(write_slot)
|
||||
print(f"\n[3] Pipeline configuration for chunk {current_chunk_idx}:")
|
||||
print(f" - Write slot: {write_slot}")
|
||||
print(f" - Load slots: {load_slots}")
|
||||
print(f" - Pipeline depth (N-way): {len(load_slots)}")
|
||||
assert len(load_slots) == NUM_GPU_SLOTS - 1, f"Expected {NUM_GPU_SLOTS - 1} load slots"
|
||||
|
||||
manager.deallocate(seq)
|
||||
print(f" - Warmup {warmup_iter + 1}/3 completed")
|
||||
# 4. Warmup
|
||||
print("\n[4] Warmup (3 iterations)...")
|
||||
for i in range(3):
|
||||
outputs = simulate_full_forward(layers, manager, cpu_block_table, CHUNK_SIZE)
|
||||
torch.cuda.synchronize()
|
||||
print(f" - Warmup {i+1}/3 done")
|
||||
|
||||
# 4. Benchmark runs
|
||||
print(f"\n[4] Benchmark runs (10 iterations)...")
|
||||
for bench_iter in range(10):
|
||||
manager.prefilled_blocks.clear()
|
||||
seq = create_test_sequence(manager, num_chunks=NUM_CHUNKS)
|
||||
# 5. Benchmark
|
||||
NUM_ITERS = 10
|
||||
print(f"\n[5] Benchmark ({NUM_ITERS} iterations)...")
|
||||
|
||||
for chunk_idx in range(NUM_CHUNKS):
|
||||
write_slot = manager.offload_engine.get_write_slot_for_prefill(chunk_idx)
|
||||
load_slots = manager.offload_engine.get_load_slots_for_prefill(write_slot)
|
||||
output = simulate_chunk_forward(layers, manager, seq, chunk_idx, CHUNK_SIZE)
|
||||
torch.cuda.synchronize()
|
||||
start_event = torch.cuda.Event(enable_timing=True)
|
||||
end_event = torch.cuda.Event(enable_timing=True)
|
||||
|
||||
manager.deallocate(seq)
|
||||
print(f" - Iteration {bench_iter + 1}/10 completed")
|
||||
start_event.record()
|
||||
for i in range(NUM_ITERS):
|
||||
torch.cuda.nvtx.range_push(f"Iteration_{i}")
|
||||
outputs = simulate_full_forward(layers, manager, cpu_block_table, CHUNK_SIZE)
|
||||
torch.cuda.nvtx.range_pop()
|
||||
end_event.record()
|
||||
|
||||
# 5. Verify results (using last iteration's seq)
|
||||
print("\n[5] Verifying ring buffer and offload...")
|
||||
for chunk_idx in range(NUM_CHUNKS):
|
||||
expected_slot = chunk_idx % NUM_GPU_SLOTS
|
||||
actual_slot = manager.offload_engine.get_write_slot_for_prefill(chunk_idx)
|
||||
assert actual_slot == expected_slot, f"Chunk {chunk_idx}: expected slot {expected_slot}, got {actual_slot}"
|
||||
torch.cuda.synchronize()
|
||||
elapsed_ms = start_event.elapsed_time(end_event)
|
||||
|
||||
cpu_block_table = manager.get_prefilled_cpu_blocks(seq)
|
||||
assert cpu_block_table == seq.block_table[:NUM_CHUNKS], "CPU block table mismatch"
|
||||
print(" - Ring buffer cycling verified ✓")
|
||||
print(" - CPU offload verified ✓")
|
||||
# Stats
|
||||
total_blocks_loaded = NUM_PREV_BLOCKS * NUM_LAYERS * NUM_ITERS
|
||||
blocks_per_sec = total_blocks_loaded / (elapsed_ms / 1000)
|
||||
total_tokens = NUM_PREV_BLOCKS * BLOCK_SIZE * NUM_LAYERS * NUM_ITERS
|
||||
tokens_per_sec = total_tokens / (elapsed_ms / 1000)
|
||||
|
||||
# Cleanup
|
||||
manager.deallocate(seq)
|
||||
print(f"\n[6] Results:")
|
||||
print(f" - Total time: {elapsed_ms:.2f} ms")
|
||||
print(f" - Per iteration: {elapsed_ms / NUM_ITERS:.2f} ms")
|
||||
print(f" - Blocks loaded: {total_blocks_loaded} ({blocks_per_sec:.0f} blocks/s)")
|
||||
print(f" - Tokens processed: {total_tokens} ({tokens_per_sec:.0f} tok/s)")
|
||||
|
||||
# 7. Verification
|
||||
print("\n[7] Verification:")
|
||||
assert len(outputs) == NUM_LAYERS, f"Expected {NUM_LAYERS} outputs"
|
||||
for i, o in enumerate(outputs):
|
||||
assert o is not None, f"Layer {i} output is None"
|
||||
assert o.shape == (1, CHUNK_SIZE, NUM_HEADS, HEAD_DIM), f"Layer {i} shape mismatch"
|
||||
print(" - All layer outputs valid ✓")
|
||||
print(" - N-way pipeline executed correctly ✓")
|
||||
|
||||
# Cleanup
|
||||
reset_context()
|
||||
|
||||
Reference in New Issue
Block a user