[docs] Update CLAUDE.md.

This commit is contained in:
Zijie Tian
2026-01-03 20:46:00 +08:00
parent 8c3418725b
commit 9b52d25866

View File

@@ -20,6 +20,80 @@ For sparse attention related content (block sparse attention, MInference, FlexPr
- **BlockManager** (`block_manager.py`): Paged attention with prefix caching (xxhash), default block size 4096
- **Attention** (`layers/attention.py`): FlashAttention with chunked methods for CPU offload
## PyTorch Hooks for Debugging
### Hook Positions in Qwen3
```
decoder_layer
├── input_layernorm (RMSNorm)
├── self_attn (Qwen3Attention) ← Hook here for attention I/O after o_proj
│ ├── q_proj → q_norm → RoPE
│ ├── k_proj → k_norm → RoPE
│ ├── v_proj
│ ├── attn (Attention) ← Hook here for Q/K/V tensors
│ │ └── FlashAttention / SDPA
│ └── o_proj
├── post_attention_layernorm (RMSNorm)
└── mlp (Qwen3MLP)
```
### Hook Types & Data Shapes
| Hook Position | Type | Captured Data |
|---------------|------|---------------|
| `self_attn` | post | `[batch, seq_len, hidden_size]` - after o_proj |
| `self_attn.attn` | pre | Q,K,V: `[seq_len, num_heads, head_dim]` - after RoPE |
| `self_attn.attn` | post | `[seq_len, num_heads, head_dim]` - before o_proj |
### Example: Capture Attention Outputs
```python
storage = {}
def make_hook(layer_id: int, storage: dict):
def hook(module, inputs, output):
if isinstance(output, tuple):
attn_output = output[0]
else:
attn_output = output
# nanovllm shape: [num_tokens, hidden_size] -> add batch dim
if attn_output.dim() == 2:
attn_output = attn_output.unsqueeze(0)
storage[layer_id] = attn_output.detach().clone()
return hook
# Register hooks
hooks = []
for layer_idx, layer in enumerate(model.model.layers):
hooks.append(layer.self_attn.register_forward_hook(make_hook(layer_idx, storage)))
# Run inference...
# Cleanup
for hook in hooks:
hook.remove()
```
### Alignment Testing
Use `tests/test_align.py` to compare nanovllm with reference torch implementation:
```bash
python tests/test_align.py
```
Key files:
- `tests/modeling_qwen3.py`: Reference Qwen3 implementation (torch + transformers only)
- `tests/test_align.py`: Compares attention outputs between nanovllm and reference
- `tests/test_needle_ref.py`: Reference needle test using custom Qwen3
### Common Pitfalls
1. **Shape mismatch**: nanovllm uses `[num_tokens, ...]` while torch uses `[batch, seq_len, ...]`
2. **Hook position**: `self_attn` captures after o_proj, `self_attn.attn` captures before o_proj
3. **Output format**: nanovllm returns tuple `(attn_output, None)`, handle with `output[0]`
## CPU Offload System
### Ring Buffer Design