init commit

This commit is contained in:
GeeeekExplorer
2025-06-10 00:23:23 +08:00
commit a5a4909e6a
26 changed files with 1677 additions and 0 deletions

View File

@@ -0,0 +1,118 @@
from collections import deque
import xxhash
import numpy as np
from nanovllm.engine.sequence import Sequence
def compute_hash(token_ids: list[int], prefix: int = -1):
h = xxhash.xxh64()
if prefix != -1:
h.update(prefix.to_bytes(8))
h.update(np.array(token_ids).tobytes())
return h.intdigest()
class Block:
def __init__(self, block_id):
self.block_id = block_id
self.ref_count = 0
self.hash = -1
self.token_ids = []
def update(self, hash: int, token_ids: list[int]):
assert hash != -1
assert len(token_ids) == 256
self.hash = hash
self.token_ids = token_ids
def reset(self):
self.ref_count = 1
self.hash = -1
self.token_ids = []
def __repr__(self):
return f"{(self.block_id, self.ref_count, self.hash)}"
class BlockManager:
def __init__(self, num_blocks: int, block_size: int = 256):
assert block_size == 256
self.block_size = block_size
self.blocks: list[Block] = [Block(i) for i in range(num_blocks)]
self.hash_to_block_id: dict[int, int] = dict()
self.free_block_ids: deque[int] = deque(range(num_blocks))
self.used_block_ids: set[int] = set()
def _allocate_block(self, block_id: int):
block = self.blocks[block_id]
assert block.ref_count == 0
block.reset()
self.free_block_ids.remove(block_id)
self.used_block_ids.add(block_id)
return self.blocks[block_id]
def _deallocate_block(self, block_id: int):
assert self.blocks[block_id].ref_count == 0
self.used_block_ids.remove(block_id)
self.free_block_ids.append(block_id)
def can_allocate(self, seq: Sequence):
return seq.num_blocks <= len(self.free_block_ids)
def allocate(self, seq: Sequence):
assert not seq.block_table
h = -1
cache_miss = False
for i in range(seq.num_blocks):
token_ids = seq.block(i, self.block_size)
h = compute_hash(token_ids, h) if len(token_ids) == self.block_size else -1
block_id = self.hash_to_block_id.get(h, -1)
if block_id == -1 or self.blocks[block_id].token_ids != token_ids:
cache_miss = True
if cache_miss:
block_id = self.free_block_ids[0]
block = self._allocate_block(block_id)
else:
seq.num_cached_tokens += self.block_size
if block_id in self.used_block_ids:
block = self.blocks[block_id]
block.ref_count += 1
else:
block = self._allocate_block(block_id)
if h != -1:
block.update(h, token_ids)
self.hash_to_block_id[h] = block_id
seq.block_table.append(block_id)
def deallocate(self, seq: Sequence):
for block_id in seq.block_table:
block = self.blocks[block_id]
block.ref_count -= 1
if block.ref_count == 0:
self._deallocate_block(block_id)
seq.num_cached_tokens = 0
seq.block_table.clear()
def can_append(self):
return len(self.free_block_ids) >= 1
def may_append(self, seq: Sequence):
block_table = seq.block_table
last_block = self.blocks[block_table[-1]]
if len(seq) % self.block_size == 1:
assert last_block.hash != -1
block_id = self.free_block_ids[0]
self._allocate_block(block_id)
block_table.append(block_id)
elif len(seq) % self.block_size == 0:
assert last_block.hash == -1
token_ids = seq.last_block(self.block_size)
prefix = self.blocks[block_table[-2]].hash if len(block_table) > 1 else -1
h = compute_hash(token_ids, prefix)
last_block.update(h, token_ids)
self.hash_to_block_id[h] = last_block.block_id
else:
assert last_block.hash == -1

View File

@@ -0,0 +1,66 @@
from collections import defaultdict
from tqdm.auto import tqdm
from transformers import AutoConfig, AutoTokenizer
from nanovllm.config import Config
from nanovllm.sampling_params import SamplingParams
from nanovllm.engine.sequence import Sequence
from nanovllm.engine.scheduler import Scheduler
from nanovllm.engine.model_runner import ModelRunner
class LLMEngine:
def __init__(self, model, **kwargs):
config = Config(model)
for k, v in kwargs.items():
if hasattr(config, k):
setattr(config, k, v)
config.hf_config = AutoConfig.from_pretrained(config.model)
config.max_model_len = min(config.max_model_len, config.hf_config.max_position_embeddings)
self.tokenizer = AutoTokenizer.from_pretrained(config.model, use_fast=True)
config.eos = self.tokenizer.eos_token_id
self.model_runner = ModelRunner(config)
self.scheduler = Scheduler(config)
def add_request(self, prompt: str | list[int], sampling_params: SamplingParams):
if isinstance(prompt, str):
prompt = self.tokenizer.encode(prompt)
seq = Sequence(prompt, sampling_params)
self.scheduler.add(seq)
def step(self):
seqs, is_prefill = self.scheduler.schedule()
token_ids = self.model_runner.run(seqs, is_prefill)
finished = self.scheduler.postprocess(seqs, token_ids)
return [(seq.seq_id, token_id, finish) for seq, token_id, finish in zip(seqs, token_ids, finished)]
def is_finished(self):
return self.scheduler.is_finished()
def generate(
self,
prompts: list[str] | list[list[int]],
sampling_params: SamplingParams | list[SamplingParams],
use_tqdm: bool = True,
) -> list[str]:
if use_tqdm:
pbar = tqdm(total=len(prompts),
desc="Processed prompts",
)
if not isinstance(SamplingParams, list):
sampling_params = [sampling_params] * len(prompts)
for prompt, sp in zip(prompts, sampling_params):
self.add_request(prompt, sp)
outputs = defaultdict(list)
while not self.is_finished():
output = self.step()
for seq_id, token_id, finish in output:
outputs[seq_id].append(token_id)
if use_tqdm and finish:
pbar.update(1)
outputs = [outputs[seq_id] for seq_id in sorted(outputs)]
outputs = [self.tokenizer.decode(token_ids) for token_ids in outputs]
if use_tqdm:
pbar.close()
return outputs

View File

@@ -0,0 +1,198 @@
import torch
from nanovllm.config import Config
from nanovllm.engine.sequence import Sequence
from nanovllm.utils.context import set_context, get_context, reset_context
from nanovllm.utils.memory import get_gpu_memory
from nanovllm.models.qwen3 import Qwen3ForCausalLM
from nanovllm.layers.sampler import Sampler
class ModelRunner:
def __init__(self, config: Config):
self.config = config
hf_config = config.hf_config
self.block_size = config.kvcache_block_size
self.enforce_eager = config.enforce_eager
default_dtype = torch.get_default_dtype()
torch.set_default_dtype(hf_config.torch_dtype)
torch.set_default_device("cuda")
self.model = Qwen3ForCausalLM(hf_config)
self.model.load_weights(config.model)
self.sampler = Sampler()
self.allocate_kv_cache(config.gpu_memory_utilization)
if not self.enforce_eager:
self.capture_model()
torch.set_default_device("cpu")
torch.set_default_dtype(default_dtype)
def allocate_kv_cache(self, gpu_memory_utilization):
config = self.config
hf_config = config.hf_config
total, used, _ = get_gpu_memory()
free = total * gpu_memory_utilization - used
block_bytes = 2 * hf_config.num_hidden_layers * self.block_size * hf_config.num_key_value_heads * hf_config.head_dim * hf_config.torch_dtype.itemsize
config.num_kvcache_blocks = int(free * 1e6) // block_bytes
self.kv_cache = torch.zeros(2, hf_config.num_hidden_layers, config.num_kvcache_blocks, self.block_size, hf_config.num_key_value_heads, hf_config.head_dim)
layer_id = 0
for module in self.model.modules():
if hasattr(module, "k_cache") and hasattr(module, "v_cache"):
module.k_cache = self.kv_cache[0, layer_id]
module.v_cache = self.kv_cache[1, layer_id]
layer_id += 1
def preare_block_tables(self, seqs: list[Sequence]):
max_len = max(len(seq.block_table) for seq in seqs)
block_tables = [
seq.block_table + [-1] * (max_len - len(seq.block_table))
for seq in seqs
]
block_tables = torch.tensor(block_tables, dtype=torch.int32, pin_memory=True).cuda(non_blocking=True)
return block_tables
def prepare_prefill(self, seqs: list[Sequence]):
input_ids = []
positions = []
cu_seqlens_q = [0]
cu_seqlens_k = [0]
max_seqlen_q = 0
max_seqlen_k = 0
slot_mapping = []
context_lens = None
block_tables = None
for seq in seqs:
seqlen = len(seq)
input_ids.extend(seq[seq.num_cached_tokens:])
positions.extend(list(range(seq.num_cached_tokens, len(seq))))
seqlen_q = seqlen - seq.num_cached_tokens
seqlen_k = seqlen
cu_seqlens_q.append(cu_seqlens_q[-1] + seqlen_q)
cu_seqlens_k.append(cu_seqlens_k[-1] + seqlen_k)
max_seqlen_q = max(seqlen_q, max_seqlen_q)
max_seqlen_k = max(seqlen_k, max_seqlen_k)
for i in range(seq.num_cached_blocks, seq.num_blocks):
start = seq.block_table[i] * self.block_size
if i != seq.num_blocks - 1:
end = start + self.block_size
else:
end = start + len(seq.last_block())
slot_mapping.extend(list(range(start, end)))
assert len(input_ids) == len(slot_mapping)
assert len(input_ids) == cu_seqlens_q[-1]
if cu_seqlens_k[-1] > cu_seqlens_q[-1]: # prefix cache
context_lens = torch.tensor([len(seq) for seq in seqs], dtype=torch.int32, pin_memory=True).cuda(non_blocking=True)
block_tables = self.preare_block_tables(seqs)
input_ids = torch.tensor(input_ids, dtype=torch.int64, pin_memory=True).cuda(non_blocking=True)
positions = torch.tensor(positions, dtype=torch.int64, pin_memory=True).cuda(non_blocking=True)
cu_seqlens_q = torch.tensor(cu_seqlens_q, dtype=torch.int32, pin_memory=True).cuda(non_blocking=True)
cu_seqlens_k = torch.tensor(cu_seqlens_k, dtype=torch.int32, pin_memory=True).cuda(non_blocking=True)
slot_mapping = torch.tensor(slot_mapping, dtype=torch.int32, pin_memory=True).cuda(non_blocking=True)
set_context(True, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, slot_mapping, context_lens, block_tables)
return input_ids, positions
def prepare_decode(self, seqs: list[Sequence]):
input_ids = []
positions = []
slot_mapping = []
context_lens = []
for seq in seqs:
input_ids.append(seq.last_token)
positions.append(len(seq))
context_lens.append(len(seq))
slot_mapping.append(seq.block_table[-1] * self.block_size + len(seq.last_block()))
input_ids = torch.tensor(input_ids, dtype=torch.int64, pin_memory=True).cuda(non_blocking=True)
positions = torch.tensor(positions, dtype=torch.int64, pin_memory=True).cuda(non_blocking=True)
slot_mapping = torch.tensor(slot_mapping, dtype=torch.int32, pin_memory=True).cuda(non_blocking=True)
context_lens = torch.tensor(context_lens, dtype=torch.int32, pin_memory=True).cuda(non_blocking=True)
block_tables = self.preare_block_tables(seqs)
set_context(False, slot_mapping=slot_mapping, context_lens=context_lens, block_tables=block_tables)
return input_ids, positions
def prepare_sample(self, seqs: list[Sequence]):
temperatures = []
for seq in seqs:
temperatures.append(seq.temperature)
temperatures = torch.tensor(temperatures, dtype=torch.float32, pin_memory=True).cuda(non_blocking=True)
return temperatures
@torch.inference_mode()
def run_model(self, input_ids: torch.Tensor, positions: torch.Tensor, is_prefill):
if is_prefill or self.enforce_eager or input_ids.size(0) > 256:
return self.model.compute_logits(self.model(input_ids, positions))
else:
bs = input_ids.size(0)
context = get_context()
self.reset_graph_vars()
graph = self.graphs[next(x for x in self.graph_bs if x >= bs)]
graph_vars = self.graph_vars
graph_vars["input_ids"][:bs] = input_ids
graph_vars["positions"][:bs] = positions
graph_vars["slot_mapping"][:bs] = context.slot_mapping
graph_vars["context_lens"][:bs] = context.context_lens
graph_vars["block_tables"][:bs, :context.block_tables.size(1)] = context.block_tables
graph.replay()
return self.model.compute_logits(graph_vars["outputs"][:bs])
def reset_graph_vars(self):
graph_vars = self.graph_vars
graph_vars["input_ids"].zero_()
graph_vars["positions"].zero_()
graph_vars["slot_mapping"].zero_()
graph_vars["context_lens"].zero_()
graph_vars["block_tables"].zero_()
def run(self, seqs: list[Sequence], is_prefill: bool) -> list[int]:
input_ids, positions = self.prepare_prefill(seqs) if is_prefill else self.prepare_decode(seqs)
temperatures = self.prepare_sample(seqs)
logits = self.run_model(input_ids, positions, is_prefill)
token_ids = self.sampler(logits, temperatures).tolist()
reset_context()
return token_ids
@torch.inference_mode()
def capture_model(self):
get_rng_state = torch.cuda.get_rng_state
set_rng_state = torch.cuda.set_rng_state
rng_state = torch.cuda.get_rng_state()
torch.cuda.get_rng_state = lambda: rng_state
torch.cuda.set_rng_state = lambda _: None
config = self.config
hf_config = config.hf_config
max_bs = min(self.config.max_num_seqs, 256)
max_num_blocks = (config.max_model_len + self.block_size - 1) // self.block_size
input_ids = torch.zeros(max_bs, dtype=torch.int64)
positions = torch.zeros(max_bs, dtype=torch.int64)
slot_mapping = torch.zeros(max_bs, dtype=torch.int32)
context_lens = torch.zeros(max_bs, dtype=torch.int32)
block_tables = torch.zeros(max_bs, max_num_blocks, dtype=torch.int32)
outputs = torch.zeros(max_bs, hf_config.hidden_size)
self.graph_bs = [1, 2, 4, 8, 16] + list(range(32, max_bs + 1, 32))
self.graphs = {}
self.graph_pool = None
for bs in reversed(self.graph_bs):
graph = torch.cuda.CUDAGraph()
set_context(False, slot_mapping=slot_mapping[:bs], context_lens=context_lens[:bs], block_tables=block_tables[:bs])
outputs[:bs] = self.model(input_ids[:bs], positions[:bs]) # warmup
with torch.cuda.graph(graph, self.graph_pool):
outputs[:bs] = self.model(input_ids[:bs], positions[:bs]) # capture
if self.graph_pool is None:
self.graph_pool = graph.pool()
self.graphs[bs] = graph
torch.cuda.synchronize()
reset_context()
self.graph_vars = dict(
input_ids=input_ids,
positions=positions,
slot_mapping=slot_mapping,
context_lens=context_lens,
block_tables=block_tables,
outputs=outputs,
)
torch.cuda.get_rng_state = get_rng_state
torch.cuda.set_rng_state = set_rng_state

View File

@@ -0,0 +1,84 @@
from collections import deque
from nanovllm.config import Config
from nanovllm.engine.sequence import Sequence, SequenceStatus
from nanovllm.engine.block_manager import BlockManager
class Scheduler:
def __init__(self, config: Config):
self.max_num_seqs = config.max_num_seqs
self.max_num_batched_tokens = config.max_num_batched_tokens
self.eos = config.eos
self.block_manager = BlockManager(config.num_kvcache_blocks, config.kvcache_block_size)
self.waiting: deque[Sequence] = deque()
self.running: deque[Sequence] = deque()
self.num_finished = 0
self.num_tokens = 0
def is_finished(self):
return not self.waiting and not self.running
def add(self, seq: Sequence):
self.waiting.append(seq)
def schedule(self) -> tuple[list[Sequence], SequenceStatus]:
# prefill
scheduled_seqs = []
num_seqs = 0
num_batched_tokens = 0
while self.waiting and num_seqs < self.max_num_seqs:
seq = self.waiting[0]
if num_batched_tokens + len(seq) > self.max_num_batched_tokens or not self.block_manager.can_allocate(seq):
break
num_seqs += 1
self.block_manager.allocate(seq)
num_batched_tokens += len(seq) - seq.num_cached_tokens
seq.status = SequenceStatus.RUNNING
self.waiting.popleft()
self.running.append(seq)
scheduled_seqs.append(seq)
if scheduled_seqs:
return scheduled_seqs, True
# decode
# self.running = deque(sorted(self.running))
while self.running and num_seqs < self.max_num_seqs:
seq = self.running.popleft()
while not self.block_manager.can_append():
if self.running:
self.preempt(self.running.pop())
else:
self.preempt(seq)
break
else:
num_seqs += 1
self.block_manager.may_append(seq)
scheduled_seqs.append(seq)
running = deque(scheduled_seqs)
running.extend(self.running)
self.running = running
if scheduled_seqs:
return scheduled_seqs, False
def preempt(self, seq: Sequence):
seq.status = SequenceStatus.WAITING
self.block_manager.deallocate(seq)
self.waiting.appendleft(seq)
return True
def postprocess(self, seqs: list[Sequence], token_ids: list[int]) -> list[bool]:
self.num_tokens += len(token_ids)
finished = []
for seq, token_id in zip(seqs, token_ids):
seq.append_token(token_id)
if token_id == self.eos or seq.num_completion_tokens == seq.max_tokens:
seq.status = SequenceStatus.FINISHED
self.block_manager.deallocate(seq)
self.running.remove(seq)
self.num_finished += 1
finished.append(True)
else:
finished.append(False)
return finished

View File

@@ -0,0 +1,73 @@
from copy import copy
from enum import Enum, auto
from itertools import count
from nanovllm.sampling_params import SamplingParams
class SequenceStatus(Enum):
WAITING = auto()
RUNNING = auto()
FINISHED = auto()
class Sequence:
counter = count()
def __init__(self, token_ids: list[int], sampling_params: SamplingParams):
self.seq_id = next(Sequence.counter)
self.status = SequenceStatus.WAITING
self.token_ids = copy(token_ids)
self.num_prompt_tokens = len(token_ids)
self._num_cached_tokens = 0
self.block_table = []
self.temperature = sampling_params.temperature
self.max_tokens = sampling_params.max_tokens
self.ignore_eos = sampling_params.ignore_eos
def __len__(self):
return len(self.token_ids)
def __lt__(self, other):
return self.seq_id < other.seq_id
def __getitem__(self, key):
return self.token_ids[key]
@property
def num_completion_tokens(self):
return len(self.token_ids) - self.num_prompt_tokens
@property
def num_cached_tokens(self):
return self._num_cached_tokens
@num_cached_tokens.setter
def num_cached_tokens(self, num_cached_tokens):
assert num_cached_tokens % 256 == 0
self._num_cached_tokens = num_cached_tokens
@property
def num_cached_blocks(self):
return self.num_cached_tokens // 256
@property
def num_blocks(self):
return (len(self.token_ids) + 255) // 256
@property
def last_token(self):
return self.token_ids[-1]
def block(self, i, block_size=256):
return self.token_ids[i*block_size: (i+1)*block_size]
def last_block(self, block_size=256):
n = self.num_blocks
t = len(self) + block_size - self.num_blocks * block_size
x = self.token_ids[(n-1)*block_size:]
assert len(x) == t
return x
def append_token(self, token_id: int):
self.token_ids.append(token_id)