init commit
This commit is contained in:
72
nanovllm/layers/embed_head.py
Normal file
72
nanovllm/layers/embed_head.py
Normal file
@@ -0,0 +1,72 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
import torch.distributed as dist
|
||||
|
||||
from nanovllm.utils.context import get_context
|
||||
|
||||
|
||||
class VocabParallelEmbedding(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
num_embeddings: int,
|
||||
embedding_dim: int,
|
||||
):
|
||||
super().__init__()
|
||||
self.tp_rank = 0 # get_tensor_model_parallel_rank()
|
||||
self.tp_size = 1 # get_tensor_model_parallel_world_size()
|
||||
assert num_embeddings % self.tp_size == 0
|
||||
self.num_embeddings = num_embeddings
|
||||
self.num_embeddings_per_partition = self.num_embeddings // self.tp_size
|
||||
self.vocab_start_idx = self.num_embeddings_per_partition * self.tp_rank
|
||||
self.vocab_end_idx = self.vocab_start_idx + self.num_embeddings_per_partition
|
||||
self.embedding_dim = embedding_dim
|
||||
self.weight = nn.Parameter(torch.empty(self.num_embeddings_per_partition, embedding_dim))
|
||||
self.weight.weight_loader = self.weight_loader
|
||||
|
||||
def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor):
|
||||
param_data = param.data
|
||||
shard_size = param_data.size(0)
|
||||
start_idx = self.tp_rank * shard_size
|
||||
loaded_weight = loaded_weight.narrow(0, start_idx, shard_size)
|
||||
assert param_data.size() == loaded_weight.size()
|
||||
param_data.copy_(loaded_weight)
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
if self.tp_size > 1:
|
||||
mask = (x >= self.vocab_start_idx) & (x < self.vocab_end_idx)
|
||||
x = mask * (x - self.vocab_start_idx)
|
||||
y = F.embedding(x, self.weight)
|
||||
if self.tp_size > 1:
|
||||
y = mask * y
|
||||
dist.all_reduce(y)
|
||||
return y
|
||||
|
||||
|
||||
class ParallelLMHead(VocabParallelEmbedding):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
num_embeddings: int,
|
||||
embedding_dim: int,
|
||||
bias: bool = False,
|
||||
):
|
||||
super().__init__(num_embeddings, embedding_dim)
|
||||
if bias:
|
||||
self.bias = nn.Parameter(torch.empty(self.num_embeddings_per_partition))
|
||||
self.bias.weight_loader = self.weight_loader
|
||||
else:
|
||||
self.register_parameter("bias", None)
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
context = get_context()
|
||||
if context.is_prefill:
|
||||
last_indices = context.cu_seqlens_q[1:] - 1
|
||||
x = x[last_indices].contiguous()
|
||||
logits = F.linear(x, self.weight, self.bias)
|
||||
# if self.tp_size > 1:
|
||||
# all_logits = [torch.empty_like(logits) for _ in range(self.tp_size)]
|
||||
# dist.gather(logits, all_logits, 0)
|
||||
# logits = torch.cat(all_logits, -1)
|
||||
return logits if self.tp_rank == 0 else None
|
||||
Reference in New Issue
Block a user