[refactor] Aligned the bench.

This commit is contained in:
Zijie Tian
2026-01-07 04:25:06 +08:00
parent 362f5e575f
commit aa953ecb59
3 changed files with 135 additions and 70 deletions

View File

@@ -5,7 +5,7 @@ from nanovllm import LLM, SamplingParams
def bench_decode(llm, num_seqs, input_len, output_len): def bench_decode(llm, num_seqs, input_len, output_len):
"""Benchmark decode performance (original test)""" """Benchmark decode performance"""
seed(0) seed(0)
prompt_token_ids = [[randint(0, 10000) for _ in range(input_len)] for _ in range(num_seqs)] prompt_token_ids = [[randint(0, 10000) for _ in range(input_len)] for _ in range(num_seqs)]
sampling_params = SamplingParams(temperature=0.6, ignore_eos=True, max_tokens=output_len) sampling_params = SamplingParams(temperature=0.6, ignore_eos=True, max_tokens=output_len)
@@ -13,9 +13,14 @@ def bench_decode(llm, num_seqs, input_len, output_len):
t = time.time() t = time.time()
llm.generate(prompt_token_ids, sampling_params, use_tqdm=False) llm.generate(prompt_token_ids, sampling_params, use_tqdm=False)
t = time.time() - t t = time.time() - t
total_output_tokens = num_seqs * output_len
throughput = total_output_tokens / t # Calculate metrics
print(f"[Decode] Input: {num_seqs}x{input_len}tok, Output: {total_output_tokens}tok, Time: {t:.2f}s, Throughput: {throughput:.2f}tok/s") prefill_tokens = num_seqs * input_len
decode_tokens = num_seqs * output_len
decode_throughput = decode_tokens / t
print(f"[Decode] Input: {num_seqs}x{input_len}tok, Output: {decode_tokens}tok, Time: {t:.2f}s")
print(f" Throughput: {decode_throughput:.2f} tok/s (includes prefill overhead)")
def bench_prefill(llm, num_seqs, input_len): def bench_prefill(llm, num_seqs, input_len):
@@ -35,32 +40,49 @@ def bench_prefill(llm, num_seqs, input_len):
def main(): def main():
import argparse import argparse
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser(description="Benchmark nanovllm GPU performance")
parser.add_argument("--input-len", type=int, default=None, help="Input length in tokens") parser.add_argument("--input-len", type=int, default=None, help="Input length in tokens")
parser.add_argument("--output-len", type=int, default=128, help="Output length in tokens") parser.add_argument("--output-len", type=int, default=64, help="Output length for decode benchmark (default: 64)")
parser.add_argument("--max-len", type=int, default=32*1024, help="Max model length (default: 32K)")
parser.add_argument("--bench-decode", action="store_true", help="Run decode benchmark (default: prefill only)")
parser.add_argument("--bench-all", action="store_true", help="Run both prefill and decode benchmarks")
args = parser.parse_args() args = parser.parse_args()
path = os.path.expanduser("~/models/Qwen3-4B-Instruct-2507/") path = os.path.expanduser("~/models/Qwen3-4B-Instruct-2507/")
# Note: Qwen3-4B-Instruct-2507 max_position_embeddings = 262144 max_len = args.max_len
max_len = 131072 # 128K tokens
llm = LLM(path, enforce_eager=False, max_model_len=max_len, max_num_batched_tokens=max_len) print(f"\n[nanovllm GPU] max_len={max_len}")
llm = LLM(
path,
enforce_eager=False,
max_model_len=max_len,
max_num_batched_tokens=max_len,
)
# Warmup # Warmup
llm.generate(["Benchmark: "], SamplingParams()) print("\nWarming up...")
llm.generate(["Benchmark warmup: "], SamplingParams(max_tokens=10))
# Default input lengths based on max_len # Default input lengths
prefill_input_len = args.input_len if args.input_len else max_len - 1 prefill_input_len = args.input_len if args.input_len else max_len - 1
decode_input_len = args.input_len if args.input_len else max_len - args.output_len decode_input_len = args.input_len if args.input_len else max_len - args.output_len
print("=" * 60) # Determine which benchmarks to run
print("Prefill Benchmark (GPU)") run_prefill = not args.bench_decode or args.bench_all
print("=" * 60) run_decode = args.bench_decode or args.bench_all
bench_prefill(llm, num_seqs=1, input_len=prefill_input_len)
# print("=" * 60) if run_prefill:
# print("Decode Benchmark (GPU)") print("\n" + "=" * 60)
# print("=" * 60) print("Prefill Benchmark (nanovllm GPU)")
# bench_decode(llm, num_seqs=1, input_len=decode_input_len, output_len=args.output_len) print("=" * 60)
bench_prefill(llm, num_seqs=1, input_len=prefill_input_len)
if run_decode:
print("\n" + "=" * 60)
print("Decode Benchmark (nanovllm GPU)")
print("=" * 60)
bench_decode(llm, num_seqs=1, input_len=decode_input_len, output_len=args.output_len)
if __name__ == "__main__": if __name__ == "__main__":

View File

@@ -5,7 +5,7 @@ from nanovllm import LLM, SamplingParams
def bench_decode(llm, num_seqs, input_len, output_len): def bench_decode(llm, num_seqs, input_len, output_len):
"""Benchmark decode performance (original test)""" """Benchmark decode performance"""
seed(0) seed(0)
prompt_token_ids = [[randint(0, 10000) for _ in range(input_len)] for _ in range(num_seqs)] prompt_token_ids = [[randint(0, 10000) for _ in range(input_len)] for _ in range(num_seqs)]
sampling_params = SamplingParams(temperature=0.6, ignore_eos=True, max_tokens=output_len) sampling_params = SamplingParams(temperature=0.6, ignore_eos=True, max_tokens=output_len)
@@ -13,9 +13,17 @@ def bench_decode(llm, num_seqs, input_len, output_len):
t = time.time() t = time.time()
llm.generate(prompt_token_ids, sampling_params, use_tqdm=False) llm.generate(prompt_token_ids, sampling_params, use_tqdm=False)
t = time.time() - t t = time.time() - t
total_output_tokens = num_seqs * output_len
throughput = total_output_tokens / t # Calculate metrics
print(f"[Decode] Input: {num_seqs}x{input_len}tok, Output: {total_output_tokens}tok, Time: {t:.2f}s, Throughput: {throughput:.2f}tok/s") prefill_tokens = num_seqs * input_len
decode_tokens = num_seqs * output_len
# Approximate: assume prefill takes ~input_len/prefill_speed, rest is decode
# For more accurate measurement, we'd need internal timing
decode_throughput = decode_tokens / t # This includes prefill time, so it's a lower bound
print(f"[Decode] Input: {num_seqs}x{input_len}tok, Output: {decode_tokens}tok, Time: {t:.2f}s")
print(f" Throughput: {decode_throughput:.2f} tok/s (includes prefill overhead)")
def bench_prefill(llm, num_seqs, input_len): def bench_prefill(llm, num_seqs, input_len):
@@ -35,26 +43,32 @@ def bench_prefill(llm, num_seqs, input_len):
def main(): def main():
import argparse import argparse
parser = argparse.ArgumentParser() from nanovllm.config import SparsePolicyType
parser.add_argument("--no-sparse", action="store_true", help="Disable sparse attention (baseline)")
parser.add_argument("--topk", type=int, default=8, help="Top-K blocks for Quest") parser = argparse.ArgumentParser(description="Benchmark CPU offload performance")
parser.add_argument("--input-len", type=int, default=None, help="Input length in tokens (default: max_len - 1 for prefill, max_len - output_len for decode)") parser.add_argument("--enable-quest", action="store_true", help="Enable Quest sparse attention for decode")
parser.add_argument("--output-len", type=int, default=128, help="Output length in tokens") parser.add_argument("--topk", type=int, default=16, help="Top-K blocks for Quest (default: 16)")
parser.add_argument("--threshold", type=int, default=4, help="Apply sparse only when blocks > threshold (default: 4)")
parser.add_argument("--input-len", type=int, default=None, help="Input length in tokens")
parser.add_argument("--output-len", type=int, default=64, help="Output length for decode benchmark (default: 64)")
parser.add_argument("--num-gpu-blocks", type=int, default=6, help="Number of GPU blocks (default: 6)")
parser.add_argument("--max-len", type=int, default=32*1024, help="Max model length (default: 32K)")
parser.add_argument("--bench-decode", action="store_true", help="Run decode benchmark (default: prefill only)")
parser.add_argument("--bench-all", action="store_true", help="Run both prefill and decode benchmarks")
args = parser.parse_args() args = parser.parse_args()
path = os.path.expanduser("~/models/Qwen3-4B-Instruct-2507/") path = os.path.expanduser("~/models/Qwen3-4B-Instruct-2507/")
# Note: Qwen3-4B-Instruct-2507 max_position_embeddings = 262144 max_len = args.max_len
max_len = 32 * 1024 # 128K tokens
# Setup policy configuration # Setup policy configuration
if not args.no_sparse: if args.enable_quest:
prefill_policy = "full" # Full attention for prefill sparse_policy = SparsePolicyType.QUEST
decode_policy = "quest" # Quest Top-K for decode print(f"\n[Quest Sparse Attention] topk={args.topk}, threshold={args.threshold}")
print(f"\n[Quest Sparse Attention] prefill={prefill_policy}, decode={decode_policy}, topk={args.topk}")
else: else:
prefill_policy = "full" # Full attention for both phases sparse_policy = SparsePolicyType.FULL
decode_policy = "full" print("\n[Full Attention] baseline (no sparse)")
print("\n[Full Attention] No sparse policy (baseline)")
print(f"[Config] max_len={max_len}, num_gpu_blocks={args.num_gpu_blocks}")
llm = LLM( llm = LLM(
path, path,
@@ -62,29 +76,35 @@ def main():
max_model_len=max_len, max_model_len=max_len,
max_num_batched_tokens=max_len, max_num_batched_tokens=max_len,
enable_cpu_offload=True, enable_cpu_offload=True,
num_gpu_blocks=6, # Small GPU buffer for offload testing num_gpu_blocks=args.num_gpu_blocks,
prefill_policy=prefill_policy, sparse_policy=sparse_policy,
decode_policy=decode_policy,
sparse_topk_blocks=args.topk, sparse_topk_blocks=args.topk,
sparse_threshold_blocks=4, sparse_threshold_blocks=args.threshold,
) )
# Warmup # Warmup
llm.generate(["Benchmark: "], SamplingParams()) print("\nWarming up...")
llm.generate(["Benchmark warmup: "], SamplingParams(max_tokens=10))
# Default input lengths based on max_len # Default input lengths
prefill_input_len = args.input_len if args.input_len else max_len - 1 prefill_input_len = args.input_len if args.input_len else max_len - 1
decode_input_len = args.input_len if args.input_len else max_len - args.output_len decode_input_len = args.input_len if args.input_len else max_len - args.output_len
print("=" * 60) # Determine which benchmarks to run
print("Prefill Benchmark (CPU Offload)") run_prefill = not args.bench_decode or args.bench_all
print("=" * 60) run_decode = args.bench_decode or args.bench_all
bench_prefill(llm, num_seqs=1, input_len=prefill_input_len)
# print("=" * 60) if run_prefill:
# print("Decode Benchmark (CPU Offload)") print("\n" + "=" * 60)
# print("=" * 60) print("Prefill Benchmark (CPU Offload)")
# bench_decode(llm, num_seqs=1, input_len=decode_input_len, output_len=args.output_len) print("=" * 60)
bench_prefill(llm, num_seqs=1, input_len=prefill_input_len)
if run_decode:
print("\n" + "=" * 60)
print("Decode Benchmark (CPU Offload)")
print("=" * 60)
bench_decode(llm, num_seqs=1, input_len=decode_input_len, output_len=args.output_len)
if __name__ == "__main__": if __name__ == "__main__":

View File

@@ -6,7 +6,7 @@ from vllm import LLM, SamplingParams
def bench_decode(llm, num_seqs, input_len, output_len): def bench_decode(llm, num_seqs, input_len, output_len):
"""Benchmark decode performance (original test)""" """Benchmark decode performance"""
seed(0) seed(0)
prompt_token_ids = [[randint(0, 10000) for _ in range(input_len)] for _ in range(num_seqs)] prompt_token_ids = [[randint(0, 10000) for _ in range(input_len)] for _ in range(num_seqs)]
sampling_params = SamplingParams(temperature=0.6, ignore_eos=True, max_tokens=output_len) sampling_params = SamplingParams(temperature=0.6, ignore_eos=True, max_tokens=output_len)
@@ -15,9 +15,14 @@ def bench_decode(llm, num_seqs, input_len, output_len):
t = time.time() t = time.time()
llm.generate(prompt_token_ids, sampling_params, use_tqdm=False) llm.generate(prompt_token_ids, sampling_params, use_tqdm=False)
t = time.time() - t t = time.time() - t
total_output_tokens = num_seqs * output_len
throughput = total_output_tokens / t # Calculate metrics
print(f"[Decode] Input: {num_seqs}x{input_len}tok, Output: {total_output_tokens}tok, Time: {t:.2f}s, Throughput: {throughput:.2f}tok/s") prefill_tokens = num_seqs * input_len
decode_tokens = num_seqs * output_len
decode_throughput = decode_tokens / t
print(f"[Decode] Input: {num_seqs}x{input_len}tok, Output: {decode_tokens}tok, Time: {t:.2f}s")
print(f" Throughput: {decode_throughput:.2f} tok/s (includes prefill overhead)")
def bench_prefill(llm, num_seqs, input_len): def bench_prefill(llm, num_seqs, input_len):
@@ -38,32 +43,50 @@ def bench_prefill(llm, num_seqs, input_len):
def main(): def main():
import argparse import argparse
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser(description="Benchmark vLLM performance (for comparison)")
parser.add_argument("--input-len", type=int, default=None, help="Input length in tokens") parser.add_argument("--input-len", type=int, default=None, help="Input length in tokens")
parser.add_argument("--output-len", type=int, default=128, help="Output length in tokens") parser.add_argument("--output-len", type=int, default=64, help="Output length for decode benchmark (default: 64)")
parser.add_argument("--max-len", type=int, default=32*1024, help="Max model length (default: 32K)")
parser.add_argument("--bench-decode", action="store_true", help="Run decode benchmark (default: prefill only)")
parser.add_argument("--bench-all", action="store_true", help="Run both prefill and decode benchmarks")
args = parser.parse_args() args = parser.parse_args()
path = os.path.expanduser("~/models/Qwen3-4B-Instruct-2507/") path = os.path.expanduser("~/models/Qwen3-4B-Instruct-2507/")
# Note: Qwen3-4B-Instruct-2507 max_position_embeddings = 262144 max_len = args.max_len
max_len = 131072 # 128K tokens
llm = LLM(path, enforce_eager=False, max_model_len=max_len, max_num_seqs=128, gpu_memory_utilization=0.9) print(f"\n[vLLM] max_len={max_len}")
llm = LLM(
path,
enforce_eager=False,
max_model_len=max_len,
max_num_seqs=128,
gpu_memory_utilization=0.9,
)
# Warmup # Warmup
llm.generate([dict(prompt_token_ids=[0])], SamplingParams()) print("\nWarming up...")
llm.generate([dict(prompt_token_ids=[0, 1, 2])], SamplingParams(max_tokens=10))
# Default input lengths based on max_len # Default input lengths
prefill_input_len = args.input_len if args.input_len else max_len - 1 prefill_input_len = args.input_len if args.input_len else max_len - 1
decode_input_len = args.input_len if args.input_len else max_len - args.output_len decode_input_len = args.input_len if args.input_len else max_len - args.output_len
print("=" * 60) # Determine which benchmarks to run
print("Prefill Benchmark (vLLM)") run_prefill = not args.bench_decode or args.bench_all
print("=" * 60) run_decode = args.bench_decode or args.bench_all
bench_prefill(llm, num_seqs=1, input_len=prefill_input_len)
# print("=" * 60) if run_prefill:
# print("Decode Benchmark (vLLM)") print("\n" + "=" * 60)
# print("=" * 60) print("Prefill Benchmark (vLLM)")
# bench_decode(llm, num_seqs=1, input_len=decode_input_len, output_len=args.output_len) print("=" * 60)
bench_prefill(llm, num_seqs=1, input_len=prefill_input_len)
if run_decode:
print("\n" + "=" * 60)
print("Decode Benchmark (vLLM)")
print("=" * 60)
bench_decode(llm, num_seqs=1, input_len=decode_input_len, output_len=args.output_len)
if __name__ == "__main__": if __name__ == "__main__":