support fast pickle

This commit is contained in:
GeeeekExplorer
2025-06-14 13:36:57 +08:00
parent 4a8aa090a7
commit b6136383c9
3 changed files with 21 additions and 23 deletions

View File

@@ -107,7 +107,7 @@ class BlockManager:
block_table.append(block_id)
elif len(seq) % self.block_size == 0:
assert last_block.hash == -1
token_ids = seq.last_block()
token_ids = seq.block(seq.num_blocks-1)
prefix = self.blocks[block_table[-2]].hash if len(block_table) > 1 else -1
h = compute_hash(token_ids, prefix)
last_block.update(h, token_ids)

View File

@@ -66,7 +66,7 @@ class ModelRunner:
for seq in seqs:
seqlen = len(seq)
input_ids.extend(seq[seq.num_cached_tokens:])
positions.extend(list(range(seq.num_cached_tokens, len(seq))))
positions.extend(list(range(seq.num_cached_tokens, seqlen)))
seqlen_q = seqlen - seq.num_cached_tokens
seqlen_k = seqlen
cu_seqlens_q.append(cu_seqlens_q[-1] + seqlen_q)
@@ -78,7 +78,7 @@ class ModelRunner:
if i != seq.num_blocks - 1:
end = start + self.block_size
else:
end = start + len(seq.last_block())
end = start + seq.last_block_num_tokens
slot_mapping.extend(list(range(start, end)))
assert len(input_ids) == len(slot_mapping)
assert len(input_ids) == cu_seqlens_q[-1]
@@ -102,7 +102,7 @@ class ModelRunner:
input_ids.append(seq.last_token)
positions.append(len(seq))
context_lens.append(len(seq))
slot_mapping.append(seq.block_table[-1] * self.block_size + len(seq.last_block()) - 1)
slot_mapping.append(seq.block_table[-1] * self.block_size + seq.last_block_num_tokens - 1)
input_ids = torch.tensor(input_ids, dtype=torch.int64, pin_memory=True).cuda(non_blocking=True)
positions = torch.tensor(positions, dtype=torch.int64, pin_memory=True).cuda(non_blocking=True)
slot_mapping = torch.tensor(slot_mapping, dtype=torch.int32, pin_memory=True).cuda(non_blocking=True)

View File

@@ -19,15 +19,17 @@ class Sequence:
self.seq_id = next(Sequence.counter)
self.status = SequenceStatus.WAITING
self.token_ids = copy(token_ids)
self.last_token = token_ids[-1]
self.num_tokens = len(self.token_ids)
self.num_prompt_tokens = len(token_ids)
self._num_cached_tokens = 0
self.num_cached_tokens = 0
self.block_table = []
self.temperature = sampling_params.temperature
self.max_tokens = sampling_params.max_tokens
self.ignore_eos = sampling_params.ignore_eos
def __len__(self):
return len(self.token_ids)
return self.num_tokens
def __lt__(self, other):
return self.seq_id < other.seq_id
@@ -41,7 +43,7 @@ class Sequence:
@property
def num_completion_tokens(self):
return len(self.token_ids) - self.num_prompt_tokens
return self.num_tokens - self.num_prompt_tokens
@property
def prompt_token_ids(self):
@@ -51,33 +53,29 @@ class Sequence:
def completion_token_ids(self):
return self.token_ids[self.num_prompt_tokens:]
@property
def num_cached_tokens(self):
return self._num_cached_tokens
@num_cached_tokens.setter
def num_cached_tokens(self, num_cached_tokens):
assert num_cached_tokens % self.block_size == 0
self._num_cached_tokens = num_cached_tokens
@property
def num_cached_blocks(self):
return self.num_cached_tokens // self.block_size
@property
def num_blocks(self):
return (len(self.token_ids) + self.block_size - 1) // self.block_size
return (self.num_tokens + self.block_size - 1) // self.block_size
@property
def last_token(self):
return self.token_ids[-1]
def last_block_num_tokens(self):
return self.num_tokens - (self.num_blocks - 1) * self.block_size
def block(self, i):
assert 0 <= i < self.num_blocks
return self.token_ids[i*self.block_size: (i+1)*self.block_size]
def last_block(self):
n = self.num_blocks
return self.token_ids[(n-1)*self.block_size:]
def append_token(self, token_id: int):
self.token_ids.append(token_id)
self.last_token = token_id
self.num_tokens += 1
def __getstate__(self):
state = super().__getstate__()
if self.num_completion_tokens:
state.pop("token_ids")
return state