[refactor] Translate into english, void Chinese due to claude.
This commit is contained in:
@@ -100,16 +100,16 @@ class Attention(nn.Module):
|
||||
context,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Compute attention with 三区域 GPU buffer for chunked prefill.
|
||||
Compute attention with three-region GPU buffer for chunked prefill.
|
||||
|
||||
For chunked prefill:
|
||||
1. Load previous KV from CPU using Compute/Prefetch区 (if any previous chunks)
|
||||
1. Load previous KV from CPU using Compute/Prefetch region (if any previous chunks)
|
||||
2. Compute attention against previous KV chunks (no causal mask)
|
||||
3. Compute attention against current chunk's KV (causal)
|
||||
4. Merge all results using online softmax
|
||||
|
||||
三区域设计保证:当前chunk的KV在Compute区,previous KV从CPU加载到Prefetch区,
|
||||
不会发生写入和加载区域重叠的问题。
|
||||
Three-region design guarantees: current chunk's KV is in Compute region, previous KV is loaded
|
||||
from CPU to Prefetch region, so write and load regions never overlap.
|
||||
"""
|
||||
from nanovllm.kvcache.chunked_attention import flash_attn_with_lse, merge_attention_outputs
|
||||
|
||||
@@ -122,7 +122,7 @@ class Attention(nn.Module):
|
||||
o_acc = None
|
||||
lse_acc = None
|
||||
|
||||
# Load previous KV from CPU using Compute/Prefetch区
|
||||
# Load previous KV from CPU using Compute/Prefetch region
|
||||
# Note: context.offload_engine is actually HybridKVCacheManager
|
||||
kvcache_manager = context.offload_engine
|
||||
seq = context.chunked_seq if hasattr(context, 'chunked_seq') else None
|
||||
@@ -133,12 +133,12 @@ class Attention(nn.Module):
|
||||
|
||||
if cpu_block_table:
|
||||
offload_engine = kvcache_manager.offload_engine
|
||||
# 使用 Prefetch区 来加载 previous KV(不会与当前 Compute区 冲突)
|
||||
# Use Prefetch region to load previous KV (won't conflict with current Compute region)
|
||||
prefetch_size = offload_engine.num_prefetch_blocks
|
||||
num_chunks = (len(cpu_block_table) + prefetch_size - 1) // prefetch_size
|
||||
use_compute = True # 交替使用 Compute区 和 Prefetch区
|
||||
use_compute = True # Alternate between Compute region and Prefetch region
|
||||
|
||||
# 首先将 previous KV 加载到 Prefetch区
|
||||
# First load previous KV to Prefetch region
|
||||
# Only layer 0 triggers the load (loads ALL layers at once)
|
||||
first_chunk_end = min(prefetch_size, len(cpu_block_table))
|
||||
first_chunk_ids = cpu_block_table[:first_chunk_end]
|
||||
@@ -157,14 +157,14 @@ class Attention(nn.Module):
|
||||
next_end = min(next_start + prefetch_size, len(cpu_block_table))
|
||||
next_chunk_ids = cpu_block_table[next_start:next_end]
|
||||
if use_compute:
|
||||
# 当前在 Prefetch区,下一个加载到 Compute区(如果有空间)
|
||||
# 注意:Compute区 此时已写入当前chunk的KV,不能覆盖
|
||||
# 所以这里我们使用简单的同步策略:等待当前完成后再加载
|
||||
pass # 简化版本:不进行双缓冲,只用 Prefetch区
|
||||
# Currently in Prefetch region, next load to Compute region (if space available)
|
||||
# Note: Compute region already has current chunk's KV written, cannot overwrite
|
||||
# So here we use simple sync strategy: wait for current to complete before loading
|
||||
pass # Simplified version: no double buffering, only use Prefetch region
|
||||
else:
|
||||
offload_engine.load_to_prefetch(next_chunk_ids)
|
||||
|
||||
# Wait for Prefetch区 and get KV
|
||||
# Wait for Prefetch region and get KV
|
||||
offload_engine.wait_prefetch()
|
||||
prev_k, prev_v = offload_engine.get_kv_for_prefetch(
|
||||
self.layer_id, num_blocks_in_chunk
|
||||
@@ -185,7 +185,7 @@ class Attention(nn.Module):
|
||||
else:
|
||||
o_acc, lse_acc = merge_attention_outputs(o_acc, lse_acc, prev_o, prev_lse)
|
||||
|
||||
# Load next chunk to Prefetch区 (if exists)
|
||||
# Load next chunk to Prefetch region (if exists)
|
||||
if chunk_idx + 1 < num_chunks and self.layer_id == 0:
|
||||
next_start = end
|
||||
next_end = min(next_start + prefetch_size, len(cpu_block_table))
|
||||
@@ -218,16 +218,16 @@ class Attention(nn.Module):
|
||||
context,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Compute decode attention with 三区域 GPU buffer.
|
||||
Compute decode attention with three-region GPU buffer.
|
||||
|
||||
All KV is stored on CPU. Uses Compute区 buffer on GPU:
|
||||
1. Load chunk to Compute区
|
||||
All KV is stored on CPU. Uses Compute region buffer on GPU:
|
||||
1. Load chunk to Compute region
|
||||
2. Compute attention
|
||||
3. Repeat for all chunks
|
||||
4. Finally, attend to Decode区 (slot 0) which contains the new token's KV
|
||||
4. Finally, attend to Decode region (slot 0) which contains the new token's KV
|
||||
5. Merge all attention outputs using online softmax (LSE)
|
||||
|
||||
关键:新token的KV在Decode区(slot 0),不会被Compute区的加载覆盖。
|
||||
Key: new token's KV is in Decode region (slot 0), won't be overwritten by Compute region loading.
|
||||
"""
|
||||
from nanovllm.kvcache.chunked_attention import flash_attn_with_lse, merge_attention_outputs
|
||||
|
||||
@@ -246,10 +246,10 @@ class Attention(nn.Module):
|
||||
if not cpu_block_table:
|
||||
raise RuntimeError("Chunked decode attention failed: no CPU blocks available")
|
||||
|
||||
# Get the actual offload_engine for 三区域 operations
|
||||
# Get the actual offload_engine for three-region operations
|
||||
offload_engine = kvcache_manager.offload_engine
|
||||
|
||||
# Calculate chunk info using Compute区
|
||||
# Calculate chunk info using Compute region
|
||||
compute_size = offload_engine.num_compute_blocks
|
||||
num_chunks = (len(cpu_block_table) + compute_size - 1) // compute_size
|
||||
|
||||
@@ -262,12 +262,12 @@ class Attention(nn.Module):
|
||||
num_blocks_in_chunk = end - start
|
||||
chunk_ids = cpu_block_table[start:end]
|
||||
|
||||
# Load this chunk to Compute区
|
||||
# Load this chunk to Compute region
|
||||
# Only layer 0 triggers the load (loads ALL layers at once)
|
||||
if self.layer_id == 0:
|
||||
offload_engine.load_to_compute(chunk_ids)
|
||||
|
||||
# Wait for Compute区 to be ready and get KV
|
||||
# Wait for Compute region to be ready and get KV
|
||||
offload_engine.wait_compute()
|
||||
k_chunk, v_chunk = offload_engine.get_kv_for_compute(
|
||||
self.layer_id, num_blocks_in_chunk
|
||||
@@ -286,21 +286,31 @@ class Attention(nn.Module):
|
||||
else:
|
||||
o_acc, lse_acc = merge_attention_outputs(o_acc, lse_acc, o_chunk, lse_chunk)
|
||||
|
||||
# Now attend to Decode区 (contains the new token's KV)
|
||||
# This is the token being decoded - only 1 token at position pos_in_block
|
||||
# Now attend to Decode region (contains accumulated decode tokens)
|
||||
# When batching offloads, decode slot accumulates multiple tokens
|
||||
# from decode_start_pos_in_block to decode_pos_in_block (inclusive)
|
||||
pos_in_block = context.decode_pos_in_block
|
||||
decode_k, decode_v = offload_engine.get_kv_for_decode_slot(self.layer_id, pos_in_block)
|
||||
decode_o, decode_lse = flash_attn_with_lse(
|
||||
q_batched, decode_k, decode_v,
|
||||
softmax_scale=self.scale,
|
||||
causal=False,
|
||||
)
|
||||
start_pos = context.decode_start_pos_in_block
|
||||
num_accumulated = pos_in_block - start_pos + 1
|
||||
|
||||
# Merge with accumulated
|
||||
if o_acc is None:
|
||||
o_acc = decode_o
|
||||
else:
|
||||
o_acc, _ = merge_attention_outputs(o_acc, lse_acc, decode_o, decode_lse)
|
||||
if num_accumulated > 0:
|
||||
# Get accumulated KV in decode slot [start_pos : pos_in_block+1]
|
||||
decode_k = offload_engine.k_cache_gpu[self.layer_id, offload_engine.decode_slot, start_pos:pos_in_block+1]
|
||||
decode_v = offload_engine.v_cache_gpu[self.layer_id, offload_engine.decode_slot, start_pos:pos_in_block+1]
|
||||
decode_k = decode_k.unsqueeze(0) # [1, num_tokens, heads, dim]
|
||||
decode_v = decode_v.unsqueeze(0)
|
||||
|
||||
decode_o, decode_lse = flash_attn_with_lse(
|
||||
q_batched, decode_k, decode_v,
|
||||
softmax_scale=self.scale,
|
||||
causal=False,
|
||||
)
|
||||
|
||||
# Merge with accumulated
|
||||
if o_acc is None:
|
||||
o_acc = decode_o
|
||||
else:
|
||||
o_acc, _ = merge_attention_outputs(o_acc, lse_acc, decode_o, decode_lse)
|
||||
|
||||
if o_acc is None:
|
||||
raise RuntimeError("Chunked decode attention failed: no KV available")
|
||||
|
||||
@@ -18,6 +18,8 @@ class RMSNorm(nn.Module):
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
# Input MUST be 2D [N, D] to avoid recompilation due to rank mismatch
|
||||
# Callers should reshape 3D tensors to 2D before calling
|
||||
orig_dtype = x.dtype
|
||||
x = x.float()
|
||||
var = x.pow(2).mean(dim=-1, keepdim=True)
|
||||
@@ -31,6 +33,7 @@ class RMSNorm(nn.Module):
|
||||
x: torch.Tensor,
|
||||
residual: torch.Tensor,
|
||||
) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
# Input MUST be 2D [N, D] to avoid recompilation due to rank mismatch
|
||||
orig_dtype = x.dtype
|
||||
x = x.float().add_(residual.float())
|
||||
residual = x.to(orig_dtype)
|
||||
|
||||
Reference in New Issue
Block a user