[WIP] Added sgDMA operator for scatter kvcache communication.
This commit is contained in:
326
tests/sgdma_cpp/sgdma_test.cpp
Normal file
326
tests/sgdma_cpp/sgdma_test.cpp
Normal file
@@ -0,0 +1,326 @@
|
||||
#include <cuda_runtime.h>
|
||||
#include <iostream>
|
||||
#include <chrono>
|
||||
#include <cstring>
|
||||
#include <cstdlib>
|
||||
#include <iomanip>
|
||||
|
||||
// CUDA error checking macro
|
||||
#define CUDA_CHECK(call) do { \
|
||||
cudaError_t err = call; \
|
||||
if (err != cudaSuccess) { \
|
||||
std::cerr << "CUDA Error in " << __FILE__ << " at line " << __LINE__ << ": " \
|
||||
<< cudaGetErrorString(err) << std::endl; \
|
||||
exit(EXIT_FAILURE); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
// Configuration matching nano-vllm realistic parameters
|
||||
struct Config {
|
||||
int num_layers = 32;
|
||||
int num_blocks = 10; // Reduced from 100 to avoid huge allocation
|
||||
int block_size = 4096;
|
||||
int num_kv_heads = 8;
|
||||
int head_dim = 128;
|
||||
int dtype_size = 2; // float16
|
||||
|
||||
// Derived parameters (use size_t to avoid overflow)
|
||||
size_t features_per_block() const { return (size_t)block_size * num_kv_heads * head_dim; }
|
||||
size_t bytes_per_block() const { return features_per_block() * dtype_size; }
|
||||
int total_blocks_per_layer() const { return num_blocks; }
|
||||
size_t bytes_per_layer() const { return (size_t)num_blocks * bytes_per_block(); }
|
||||
size_t total_bytes() const { return (size_t)num_layers * bytes_per_layer(); }
|
||||
};
|
||||
|
||||
// Timer utility
|
||||
class Timer {
|
||||
std::chrono::high_resolution_clock::time_point start_time;
|
||||
public:
|
||||
void start() { start_time = std::chrono::high_resolution_clock::now(); }
|
||||
double elapsed_ms() {
|
||||
auto end = std::chrono::high_resolution_clock::now();
|
||||
return std::chrono::duration<double, std::milli>(end - start_time).count();
|
||||
}
|
||||
};
|
||||
|
||||
// Initialize CPU memory with test pattern
|
||||
void init_test_data(void* data, size_t bytes, int seed) {
|
||||
uint16_t* ptr = static_cast<uint16_t*>(data);
|
||||
size_t num_elements = bytes / sizeof(uint16_t);
|
||||
for (size_t i = 0; i < num_elements; i++) {
|
||||
ptr[i] = static_cast<uint16_t>((seed + i) % 65536);
|
||||
}
|
||||
}
|
||||
|
||||
// Verify data correctness
|
||||
bool verify_data(const void* data1, const void* data2, size_t bytes) {
|
||||
const uint16_t* p1 = static_cast<const uint16_t*>(data1);
|
||||
const uint16_t* p2 = static_cast<const uint16_t*>(data2);
|
||||
size_t num_elements = bytes / sizeof(uint16_t);
|
||||
|
||||
for (size_t i = 0; i < num_elements; i++) {
|
||||
if (p1[i] != p2[i]) {
|
||||
std::cerr << "Mismatch at element " << i << ": "
|
||||
<< p1[i] << " != " << p2[i] << std::endl;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// ============================================================
|
||||
// Test 1: Basic Functionality Test
|
||||
// ============================================================
|
||||
bool test_basic_functionality(const Config& cfg) {
|
||||
std::cout << "\n[Test 1] Basic Functionality Test" << std::endl;
|
||||
std::cout << " Testing cudaMemcpy2D correctness with strided layout" << std::endl;
|
||||
|
||||
// Allocate strided CPU memory (pinned)
|
||||
// Layout: [num_layers, num_blocks, block_features]
|
||||
size_t total_bytes = cfg.total_bytes();
|
||||
std::cout << " Allocating " << total_bytes / 1024.0 / 1024.0 / 1024.0 << " GB pinned memory..." << std::endl;
|
||||
void* cpu_strided = nullptr;
|
||||
CUDA_CHECK(cudaMallocHost(&cpu_strided, total_bytes));
|
||||
std::cout << " CPU strided memory allocated at: " << cpu_strided << std::endl;
|
||||
|
||||
// Allocate GPU memory for one block (all layers)
|
||||
size_t gpu_block_bytes = cfg.num_layers * cfg.bytes_per_block();
|
||||
void* gpu_data = nullptr;
|
||||
CUDA_CHECK(cudaMalloc(&gpu_data, gpu_block_bytes));
|
||||
|
||||
// Allocate CPU verify buffer
|
||||
void* cpu_verify = nullptr;
|
||||
CUDA_CHECK(cudaMallocHost(&cpu_verify, gpu_block_bytes));
|
||||
|
||||
// Initialize strided CPU memory
|
||||
init_test_data(cpu_strided, total_bytes, 12345);
|
||||
|
||||
// Test: Copy block_id=5 from CPU to GPU using cudaMemcpy2D
|
||||
int test_block_id = 5;
|
||||
size_t spitch = cfg.bytes_per_layer(); // Source pitch (stride between layers)
|
||||
size_t dpitch = cfg.bytes_per_block(); // Destination pitch (contiguous)
|
||||
size_t width = cfg.bytes_per_block(); // Width to copy per row
|
||||
size_t height = cfg.num_layers; // Number of rows (layers)
|
||||
|
||||
// Debug: print parameters
|
||||
std::cout << " cudaMemcpy2D parameters:" << std::endl;
|
||||
std::cout << " spitch: " << spitch << " bytes" << std::endl;
|
||||
std::cout << " dpitch: " << dpitch << " bytes" << std::endl;
|
||||
std::cout << " width: " << width << " bytes" << std::endl;
|
||||
std::cout << " height: " << height << " rows" << std::endl;
|
||||
std::cout << " dpitch >= width: " << (dpitch >= width ? "yes" : "no") << std::endl;
|
||||
std::cout << " spitch >= width: " << (spitch >= width ? "yes" : "no") << std::endl;
|
||||
|
||||
// Calculate source pointer (first layer, block_id)
|
||||
uint8_t* src_ptr = static_cast<uint8_t*>(cpu_strided) + test_block_id * cfg.bytes_per_block();
|
||||
|
||||
// H2D transfer
|
||||
CUDA_CHECK(cudaMemcpy2D(
|
||||
gpu_data, // dst
|
||||
dpitch, // dpitch
|
||||
src_ptr, // src
|
||||
spitch, // spitch
|
||||
width, // width
|
||||
height, // height
|
||||
cudaMemcpyHostToDevice
|
||||
));
|
||||
|
||||
// D2H transfer back
|
||||
CUDA_CHECK(cudaMemcpy2D(
|
||||
cpu_verify, // dst
|
||||
dpitch, // dpitch
|
||||
gpu_data, // src
|
||||
dpitch, // spitch
|
||||
width, // width
|
||||
height, // height
|
||||
cudaMemcpyDeviceToHost
|
||||
));
|
||||
|
||||
// Verify correctness
|
||||
bool passed = true;
|
||||
for (int layer = 0; layer < cfg.num_layers; layer++) {
|
||||
uint8_t* expected_ptr = static_cast<uint8_t*>(cpu_strided) +
|
||||
layer * cfg.bytes_per_layer() +
|
||||
test_block_id * cfg.bytes_per_block();
|
||||
uint8_t* actual_ptr = static_cast<uint8_t*>(cpu_verify) +
|
||||
layer * cfg.bytes_per_block();
|
||||
|
||||
if (!verify_data(expected_ptr, actual_ptr, cfg.bytes_per_block())) {
|
||||
std::cerr << " Verification failed at layer " << layer << std::endl;
|
||||
passed = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Cleanup
|
||||
CUDA_CHECK(cudaFreeHost(cpu_strided));
|
||||
CUDA_CHECK(cudaFreeHost(cpu_verify));
|
||||
CUDA_CHECK(cudaFree(gpu_data));
|
||||
|
||||
std::cout << " Result: " << (passed ? "PASSED ✓" : "FAILED ✗") << std::endl;
|
||||
return passed;
|
||||
}
|
||||
|
||||
// ============================================================
|
||||
// Test 2: Performance Benchmark
|
||||
// ============================================================
|
||||
void test_performance_benchmark(const Config& cfg) {
|
||||
std::cout << "\n[Test 2] Performance Benchmark" << std::endl;
|
||||
std::cout << " Configuration:" << std::endl;
|
||||
std::cout << " num_layers: " << cfg.num_layers << std::endl;
|
||||
std::cout << " num_blocks: " << cfg.num_blocks << std::endl;
|
||||
std::cout << " block_size: " << cfg.block_size << std::endl;
|
||||
std::cout << " num_kv_heads: " << cfg.num_kv_heads << std::endl;
|
||||
std::cout << " head_dim: " << cfg.head_dim << std::endl;
|
||||
std::cout << " dtype_size: " << cfg.dtype_size << " bytes" << std::endl;
|
||||
std::cout << " bytes_per_block: " << cfg.bytes_per_block() / 1024.0 << " KB" << std::endl;
|
||||
std::cout << " total transfer size: " << cfg.num_layers * cfg.bytes_per_block() / 1024.0 / 1024.0 << " MB" << std::endl;
|
||||
|
||||
const int num_iterations = 100;
|
||||
const int warmup = 10;
|
||||
int test_block_id = 5;
|
||||
|
||||
// Allocate memory
|
||||
size_t total_bytes = cfg.total_bytes();
|
||||
void* cpu_strided = nullptr;
|
||||
CUDA_CHECK(cudaMallocHost(&cpu_strided, total_bytes));
|
||||
|
||||
void* cpu_contiguous = nullptr;
|
||||
size_t gpu_block_bytes = cfg.num_layers * cfg.bytes_per_block();
|
||||
CUDA_CHECK(cudaMallocHost(&cpu_contiguous, gpu_block_bytes));
|
||||
|
||||
void* gpu_data = nullptr;
|
||||
CUDA_CHECK(cudaMalloc(&gpu_data, gpu_block_bytes));
|
||||
|
||||
init_test_data(cpu_strided, total_bytes, 12345);
|
||||
init_test_data(cpu_contiguous, gpu_block_bytes, 12345);
|
||||
|
||||
Timer timer;
|
||||
double elapsed;
|
||||
double bandwidth;
|
||||
|
||||
// ========================================
|
||||
// Method A: cudaMemcpy2D with strided layout
|
||||
// ========================================
|
||||
size_t spitch = cfg.bytes_per_layer();
|
||||
size_t dpitch = cfg.bytes_per_block();
|
||||
size_t width = cfg.bytes_per_block();
|
||||
size_t height = cfg.num_layers;
|
||||
uint8_t* src_ptr = static_cast<uint8_t*>(cpu_strided) + test_block_id * cfg.bytes_per_block();
|
||||
|
||||
// Warmup
|
||||
for (int i = 0; i < warmup; i++) {
|
||||
CUDA_CHECK(cudaMemcpy2D(gpu_data, dpitch, src_ptr, spitch, width, height, cudaMemcpyHostToDevice));
|
||||
}
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
// Benchmark
|
||||
timer.start();
|
||||
for (int i = 0; i < num_iterations; i++) {
|
||||
CUDA_CHECK(cudaMemcpy2D(gpu_data, dpitch, src_ptr, spitch, width, height, cudaMemcpyHostToDevice));
|
||||
}
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
elapsed = timer.elapsed_ms();
|
||||
bandwidth = (gpu_block_bytes * num_iterations / 1e9) / (elapsed / 1000.0);
|
||||
|
||||
std::cout << "\n Method A (cudaMemcpy2D strided):" << std::endl;
|
||||
std::cout << " Avg time: " << std::fixed << std::setprecision(3) << elapsed / num_iterations << " ms" << std::endl;
|
||||
std::cout << " Bandwidth: " << std::setprecision(2) << bandwidth << " GB/s" << std::endl;
|
||||
double method_a_bw = bandwidth;
|
||||
|
||||
// ========================================
|
||||
// Method B: cudaMemcpy with contiguous layout (baseline)
|
||||
// ========================================
|
||||
// Warmup
|
||||
for (int i = 0; i < warmup; i++) {
|
||||
CUDA_CHECK(cudaMemcpy(gpu_data, cpu_contiguous, gpu_block_bytes, cudaMemcpyHostToDevice));
|
||||
}
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
// Benchmark
|
||||
timer.start();
|
||||
for (int i = 0; i < num_iterations; i++) {
|
||||
CUDA_CHECK(cudaMemcpy(gpu_data, cpu_contiguous, gpu_block_bytes, cudaMemcpyHostToDevice));
|
||||
}
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
elapsed = timer.elapsed_ms();
|
||||
bandwidth = (gpu_block_bytes * num_iterations / 1e9) / (elapsed / 1000.0);
|
||||
|
||||
std::cout << "\n Method B (cudaMemcpy contiguous):" << std::endl;
|
||||
std::cout << " Avg time: " << std::fixed << std::setprecision(3) << elapsed / num_iterations << " ms" << std::endl;
|
||||
std::cout << " Bandwidth: " << std::setprecision(2) << bandwidth << " GB/s" << std::endl;
|
||||
double method_b_bw = bandwidth;
|
||||
|
||||
// ========================================
|
||||
// Method C: Layer-by-layer copy (simulate PyTorch non-contiguous)
|
||||
// ========================================
|
||||
// Warmup
|
||||
for (int i = 0; i < warmup; i++) {
|
||||
for (int layer = 0; layer < cfg.num_layers; layer++) {
|
||||
uint8_t* src_layer = static_cast<uint8_t*>(cpu_strided) +
|
||||
layer * cfg.bytes_per_layer() +
|
||||
test_block_id * cfg.bytes_per_block();
|
||||
uint8_t* dst_layer = static_cast<uint8_t*>(gpu_data) + layer * cfg.bytes_per_block();
|
||||
CUDA_CHECK(cudaMemcpy(dst_layer, src_layer, cfg.bytes_per_block(), cudaMemcpyHostToDevice));
|
||||
}
|
||||
}
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
// Benchmark
|
||||
timer.start();
|
||||
for (int i = 0; i < num_iterations; i++) {
|
||||
for (int layer = 0; layer < cfg.num_layers; layer++) {
|
||||
uint8_t* src_layer = static_cast<uint8_t*>(cpu_strided) +
|
||||
layer * cfg.bytes_per_layer() +
|
||||
test_block_id * cfg.bytes_per_block();
|
||||
uint8_t* dst_layer = static_cast<uint8_t*>(gpu_data) + layer * cfg.bytes_per_block();
|
||||
CUDA_CHECK(cudaMemcpy(dst_layer, src_layer, cfg.bytes_per_block(), cudaMemcpyHostToDevice));
|
||||
}
|
||||
}
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
elapsed = timer.elapsed_ms();
|
||||
bandwidth = (gpu_block_bytes * num_iterations / 1e9) / (elapsed / 1000.0);
|
||||
|
||||
std::cout << "\n Method C (layer-by-layer copy):" << std::endl;
|
||||
std::cout << " Avg time: " << std::fixed << std::setprecision(3) << elapsed / num_iterations << " ms" << std::endl;
|
||||
std::cout << " Bandwidth: " << std::setprecision(2) << bandwidth << " GB/s" << std::endl;
|
||||
double method_c_bw = bandwidth;
|
||||
|
||||
// Summary
|
||||
std::cout << "\n ========================================" << std::endl;
|
||||
std::cout << " Performance Summary:" << std::endl;
|
||||
std::cout << " Method A vs Method B: " << std::setprecision(2) << (method_a_bw / method_b_bw * 100) << "%" << std::endl;
|
||||
std::cout << " Method A vs Method C: " << std::setprecision(2) << (method_a_bw / method_c_bw) << "x speedup" << std::endl;
|
||||
std::cout << " ========================================" << std::endl;
|
||||
|
||||
// Cleanup
|
||||
CUDA_CHECK(cudaFreeHost(cpu_strided));
|
||||
CUDA_CHECK(cudaFreeHost(cpu_contiguous));
|
||||
CUDA_CHECK(cudaFree(gpu_data));
|
||||
}
|
||||
|
||||
int main() {
|
||||
std::cout << "=== cudaMemcpy2D Test ===" << std::endl;
|
||||
|
||||
// Print CUDA device info
|
||||
int device;
|
||||
CUDA_CHECK(cudaGetDevice(&device));
|
||||
cudaDeviceProp prop;
|
||||
CUDA_CHECK(cudaGetDeviceProperties(&prop, device));
|
||||
std::cout << "Using GPU: " << prop.name << std::endl;
|
||||
std::cout << "Memory Clock Rate: " << prop.memoryClockRate / 1000 << " MHz" << std::endl;
|
||||
std::cout << "Memory Bus Width: " << prop.memoryBusWidth << " bits" << std::endl;
|
||||
std::cout << "Peak Memory Bandwidth: " <<
|
||||
2.0 * prop.memoryClockRate * (prop.memoryBusWidth / 8) / 1.0e6 << " GB/s" << std::endl;
|
||||
|
||||
Config cfg;
|
||||
|
||||
// Run tests
|
||||
bool test1_passed = test_basic_functionality(cfg);
|
||||
test_performance_benchmark(cfg);
|
||||
|
||||
std::cout << "\n=== Test Complete ===" << std::endl;
|
||||
std::cout << "All tests " << (test1_passed ? "PASSED ✓" : "FAILED ✗") << std::endl;
|
||||
|
||||
return test1_passed ? 0 : 1;
|
||||
}
|
||||
Reference in New Issue
Block a user