This commit is contained in:
GeeeekExplorer
2025-06-12 09:41:12 +08:00
parent fee58d44e4
commit f16adb729e
4 changed files with 14 additions and 22 deletions

View File

@@ -1,11 +1,10 @@
from collections import defaultdict
from time import perf_counter
from tqdm.auto import tqdm
from transformers import AutoConfig, AutoTokenizer
from nanovllm.config import Config
from nanovllm.sampling_params import SamplingParams
from nanovllm.engine.sequence import Sequence
from nanovllm.engine.sequence import Sequence, SequenceStatus
from nanovllm.engine.scheduler import Scheduler
from nanovllm.engine.model_runner import ModelRunner
@@ -34,8 +33,10 @@ class LLMEngine:
def step(self):
seqs, is_prefill = self.scheduler.schedule()
token_ids = self.model_runner.run(seqs, is_prefill)
finished = self.scheduler.postprocess(seqs, token_ids)
return [(seq.seq_id, token_id, finish) for seq, token_id, finish in zip(seqs, token_ids, finished)], sum(len(seq) for seq in seqs) if is_prefill else len(seqs)
self.scheduler.postprocess(seqs, token_ids)
outputs = [(seq.seq_id, seq[seq.num_prompt_tokens:]) for seq in seqs if seq.status == SequenceStatus.FINISHED]
num_tokens = sum(len(seq) for seq in seqs) if is_prefill else -len(seqs)
return outputs, num_tokens
def is_finished(self):
return self.scheduler.is_finished()
@@ -56,23 +57,23 @@ class LLMEngine:
sampling_params = [sampling_params] * len(prompts)
for prompt, sp in zip(prompts, sampling_params):
self.add_request(prompt, sp)
outputs = defaultdict(list)
outputs = {}
prefill_throughput = decode_throughput = 0.
while not self.is_finished():
t = perf_counter()
output, num_tokens = self.step()
if use_tqdm:
if num_tokens > len(output):
if num_tokens > 0:
prefill_throughput = num_tokens / (perf_counter() - t)
else:
decode_throughput = num_tokens / (perf_counter() - t)
decode_throughput = -num_tokens / (perf_counter() - t)
pbar.set_postfix({
"Prefill": f"{int(prefill_throughput)}tok/s",
"Decode": f"{int(decode_throughput)}tok/s",
})
for seq_id, token_id, finish in output:
outputs[seq_id].append(token_id)
if finish and use_tqdm:
for seq_id, token_ids in output:
outputs[seq_id] = token_ids
if use_tqdm:
pbar.update(1)
outputs = [outputs[seq_id] for seq_id in sorted(outputs)]
outputs = [{"text": self.tokenizer.decode(token_ids), "token_ids": token_ids} for token_ids in outputs]