better
This commit is contained in:
@@ -1,10 +1,11 @@
|
|||||||
|
import os
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
from transformers import AutoConfig
|
from transformers import AutoConfig
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class Config:
|
class Config:
|
||||||
model: str = ''
|
model: str
|
||||||
max_num_batched_tokens: int = 32768
|
max_num_batched_tokens: int = 32768
|
||||||
max_num_seqs: int = 512
|
max_num_seqs: int = 512
|
||||||
max_model_len: int = 4096
|
max_model_len: int = 4096
|
||||||
@@ -17,5 +18,8 @@ class Config:
|
|||||||
num_kvcache_blocks: int = -1
|
num_kvcache_blocks: int = -1
|
||||||
|
|
||||||
def __post_init__(self):
|
def __post_init__(self):
|
||||||
assert self.model
|
assert os.path.isdir(self.model)
|
||||||
assert self.kvcache_block_size % 256 == 0
|
assert self.kvcache_block_size % 256 == 0
|
||||||
|
assert 1 <= self.tensor_parallel_size <= 8
|
||||||
|
self.hf_config = AutoConfig.from_pretrained(self.model)
|
||||||
|
self.max_model_len = min(self.max_model_len, self.hf_config.max_position_embeddings)
|
||||||
|
|||||||
@@ -1,4 +1,5 @@
|
|||||||
import atexit
|
import atexit
|
||||||
|
from dataclasses import fields
|
||||||
from time import perf_counter
|
from time import perf_counter
|
||||||
from tqdm.auto import tqdm
|
from tqdm.auto import tqdm
|
||||||
from transformers import AutoConfig, AutoTokenizer
|
from transformers import AutoConfig, AutoTokenizer
|
||||||
@@ -14,13 +15,9 @@ from nanovllm.engine.model_runner import ModelRunner
|
|||||||
class LLMEngine:
|
class LLMEngine:
|
||||||
|
|
||||||
def __init__(self, model, **kwargs):
|
def __init__(self, model, **kwargs):
|
||||||
config = Config(model)
|
config_fileds = {field.name for field in fields(Config)}
|
||||||
for k, v in kwargs.items():
|
config_kwargs = {k: v for k, v in kwargs.items() if k in config_fileds}
|
||||||
if hasattr(config, k):
|
config = Config(model, **config_kwargs)
|
||||||
setattr(config, k, v)
|
|
||||||
Sequence.block_size = config.kvcache_block_size
|
|
||||||
config.hf_config = AutoConfig.from_pretrained(config.model)
|
|
||||||
config.max_model_len = min(config.max_model_len, config.hf_config.max_position_embeddings)
|
|
||||||
self.ps = []
|
self.ps = []
|
||||||
self.events = []
|
self.events = []
|
||||||
for i in range(1, config.tensor_parallel_size):
|
for i in range(1, config.tensor_parallel_size):
|
||||||
|
|||||||
@@ -57,9 +57,7 @@ class ModelRunner:
|
|||||||
def loop(self):
|
def loop(self):
|
||||||
while True:
|
while True:
|
||||||
method_name, args = self.read_shm()
|
method_name, args = self.read_shm()
|
||||||
method = getattr(self, method_name, None)
|
self.call(method_name, *args)
|
||||||
assert callable(method)
|
|
||||||
method(*args)
|
|
||||||
if method_name == "exit":
|
if method_name == "exit":
|
||||||
break
|
break
|
||||||
|
|
||||||
@@ -82,8 +80,7 @@ class ModelRunner:
|
|||||||
event.set()
|
event.set()
|
||||||
|
|
||||||
def call(self, method_name, *args):
|
def call(self, method_name, *args):
|
||||||
assert self.rank == 0
|
if self.world_size > 1 and self.rank == 0:
|
||||||
if self.world_size > 1:
|
|
||||||
self.write_shm(method_name, *args)
|
self.write_shm(method_name, *args)
|
||||||
method = getattr(self, method_name, None)
|
method = getattr(self, method_name, None)
|
||||||
assert callable(method)
|
assert callable(method)
|
||||||
|
|||||||
@@ -11,4 +11,4 @@ class SiluAndMul(nn.Module):
|
|||||||
@torch.compile
|
@torch.compile
|
||||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
x, y = x.chunk(2, -1)
|
x, y = x.chunk(2, -1)
|
||||||
return F.silu(x) * y
|
return y.mul_(F.silu(x))
|
||||||
|
|||||||
@@ -10,7 +10,6 @@ def default_weight_loader(param: nn.Parameter, loaded_weight: torch.Tensor):
|
|||||||
|
|
||||||
|
|
||||||
def load_model(model: nn.Module, path: str):
|
def load_model(model: nn.Module, path: str):
|
||||||
assert os.path.isdir(path)
|
|
||||||
packed_modules_mapping = getattr(model, "packed_modules_mapping", {})
|
packed_modules_mapping = getattr(model, "packed_modules_mapping", {})
|
||||||
for file in glob(os.path.join(path, "*.safetensors")):
|
for file in glob(os.path.join(path, "*.safetensors")):
|
||||||
with safe_open(file, "pt", "cpu") as f:
|
with safe_open(file, "pt", "cpu") as f:
|
||||||
|
|||||||
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
|||||||
|
|
||||||
[project]
|
[project]
|
||||||
name = "nano-vllm"
|
name = "nano-vllm"
|
||||||
version = "0.1.0"
|
version = "0.2.0"
|
||||||
authors = [{ name = "Xingkai Yu" }]
|
authors = [{ name = "Xingkai Yu" }]
|
||||||
license = "MIT"
|
license = "MIT"
|
||||||
license-files = ["LICENSE"]
|
license-files = ["LICENSE"]
|
||||||
|
|||||||
Reference in New Issue
Block a user