from functools import lru_cache import torch from torch import nn def apply_rotary_emb( x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor, ) -> torch.Tensor: x1, x2 = torch.chunk(x.float(), 2, dim=-1) y1 = x1 * cos - x2 * sin y2 = x2 * cos + x1 * sin return torch.cat((y1, y2), dim=-1).to(x.dtype) class RotaryEmbedding(nn.Module): def __init__( self, head_size: int, rotary_dim: int, max_position_embeddings: int, base: float, ) -> None: super().__init__() self.head_size = head_size assert rotary_dim == head_size inv_freq = 1.0 / (base**(torch.arange(0, rotary_dim, 2, dtype=torch.float) / rotary_dim)) t = torch.arange(max_position_embeddings, dtype=torch.float) freqs = torch.einsum("i,j -> ij", t, inv_freq) cos = freqs.cos() sin = freqs.sin() cache = torch.cat((cos, sin), dim=-1).unsqueeze_(1) self.register_buffer("cos_sin_cache", cache, persistent=False) @torch.compile def forward( self, positions: torch.Tensor, query: torch.Tensor, key: torch.Tensor, ) -> tuple[torch.Tensor, torch.Tensor]: cos_sin = self.cos_sin_cache[positions] cos, sin = cos_sin.chunk(2, dim=-1) query = apply_rotary_emb(query, cos, sin) key = apply_rotary_emb(key, cos, sin) return query, key @lru_cache(1) def get_rope( head_size: int, rotary_dim: int, max_position: int, base: float, rope_scaling: dict | None = None, ): assert rope_scaling is None rotary_emb = RotaryEmbedding(head_size, rotary_dim, max_position, base) return rotary_emb