""" High-performance CPU-GPU KV cache transfer engine. Key design principles for CUDA Graph compatibility: 1. All tensor addresses are fixed at initialization 2. Only index tensor contents change between graph replays 3. Supports both async transfer (for prefill) and graph-based transfer (for decode) """ import torch from torch import Tensor from typing import Dict, List, Tuple, Optional from dataclasses import dataclass from nanovllm.kvcache.kernels import gathered_copy_kv from nanovllm.utils.logger import get_logger logger = get_logger("offload_engine") @dataclass class TransferEvent: """Tracks a pending async transfer.""" event: torch.cuda.Event layer_id: int src_block_id: int dst_block_id: int direction: str # "h2d" or "d2h" class OffloadEngine: """ High-performance CPU-GPU async transfer engine for KV cache offloading. Memory layout: - GPU cache: [num_layers, num_gpu_blocks, block_size, kv_heads, head_dim] - CPU cache: [num_layers, num_cpu_blocks, block_size, kv_heads, head_dim] (pinned) - Gather indices: [num_layers, num_gpu_blocks] (fixed address, variable content) CUDA Graph compatibility: - gathered_h2d_layer() can be captured into CUDA graphs - update_gather_indices() is called outside graphs to prepare indices - All tensor addresses remain fixed across graph replays """ def __init__( self, num_layers: int, num_gpu_blocks: int, num_cpu_blocks: int, block_size: int, num_kv_heads: int, head_dim: int, dtype: torch.dtype = torch.float16, num_streams: int = 4, ): self.num_layers = num_layers self.num_gpu_blocks = num_gpu_blocks self.num_cpu_blocks = num_cpu_blocks self.block_size = block_size self.num_kv_heads = num_kv_heads self.head_dim = head_dim self.dtype = dtype self.kv_dim = num_kv_heads * head_dim self.block_numel = block_size * self.kv_dim # ========== Ping-Pong 双缓冲配置 ========== assert num_gpu_blocks >= 2, "Ping-Pong需要至少2个GPU blocks" self.ping_size = num_gpu_blocks // 2 self.pong_size = num_gpu_blocks - self.ping_size self.ping_slots = list(range(self.ping_size)) # [0, 1, 2, ...] self.pong_slots = list(range(self.ping_size, num_gpu_blocks)) # [ping_size, ping_size+1, ...] self.num_gpu_slots = num_gpu_blocks # alias # ========== Fixed-address GPU KV cache ========== # Shape: [num_layers, num_gpu_blocks, block_size, kv_heads, head_dim] self.k_cache_gpu = torch.empty( num_layers, num_gpu_blocks, block_size, num_kv_heads, head_dim, dtype=dtype, device="cuda" ) self.v_cache_gpu = torch.empty( num_layers, num_gpu_blocks, block_size, num_kv_heads, head_dim, dtype=dtype, device="cuda" ) # ========== Fixed-address CPU KV cache (pinned memory) ========== self.k_cache_cpu = torch.empty( num_layers, num_cpu_blocks, block_size, num_kv_heads, head_dim, dtype=dtype, device="cpu", pin_memory=True ) self.v_cache_cpu = torch.empty( num_layers, num_cpu_blocks, block_size, num_kv_heads, head_dim, dtype=dtype, device="cpu", pin_memory=True ) # ========== Fixed-address gather indices (content is variable) ========== # gather_indices[layer][i] = CPU block id to copy to GPU slot i # -1 means no-op (skip this slot) self.gather_indices_cpu = torch.empty( num_layers, num_gpu_blocks, dtype=torch.int64, device="cpu", pin_memory=True ) self.gather_indices_cpu.fill_(-1) self.gather_indices_gpu = torch.full( (num_layers, num_gpu_blocks), -1, dtype=torch.int64, device="cuda" ) # ========== Transfer streams for async operations ========== self.transfer_streams = [torch.cuda.Stream() for _ in range(num_streams)] self.compute_stream = torch.cuda.current_stream() self._stream_idx = 0 # ========== Ping-Pong 专用 stream 和事件 ========== self.pingpong_stream = torch.cuda.Stream() # 专用于Ping-Pong传输 # 同步事件 - 加载完成 self.ping_ready = torch.cuda.Event() self.pong_ready = torch.cuda.Event() # 同步事件 - offload完成 self.ping_offload_done = torch.cuda.Event() self.pong_offload_done = torch.cuda.Event() # ========== Event tracking for async transfers ========== self.pending_events: Dict[Tuple[int, int], torch.cuda.Event] = {} def _get_next_stream(self) -> torch.cuda.Stream: """Round-robin stream selection for parallel transfers.""" stream = self.transfer_streams[self._stream_idx] self._stream_idx = (self._stream_idx + 1) % len(self.transfer_streams) return stream # ========== CUDA Graph compatible methods ========== def gathered_h2d_layer(self, layer_id: int) -> None: """ Execute gathered H2D copy for a single layer. This method is CUDA Graph compatible - can be captured into a graph. Before calling, update_gather_indices() must be called to set up which CPU blocks to copy to which GPU slots. Args: layer_id: Layer index to transfer """ gathered_copy_kv( k_src=self.k_cache_cpu[layer_id], v_src=self.v_cache_cpu[layer_id], k_dst=self.k_cache_gpu[layer_id], v_dst=self.v_cache_gpu[layer_id], indices=self.gather_indices_gpu[layer_id], ) def gathered_h2d_all_layers(self) -> None: """ Execute gathered H2D copy for all layers. CUDA Graph compatible - can be captured into a single graph. """ for layer_id in range(self.num_layers): self.gathered_h2d_layer(layer_id) def update_gather_indices( self, layer_id: int, mappings: List[Tuple[int, int]], ) -> None: """ Update gather indices for a layer (call OUTSIDE CUDA graph). Args: layer_id: Layer index mappings: List of (cpu_block_id, gpu_slot) tuples Only these slots will be updated; others keep their values """ for cpu_block_id, gpu_slot in mappings: self.gather_indices_cpu[layer_id, gpu_slot] = cpu_block_id # Async copy to GPU self.gather_indices_gpu[layer_id].copy_( self.gather_indices_cpu[layer_id], non_blocking=True ) def update_gather_indices_all_layers( self, mappings_per_layer: List[List[Tuple[int, int]]], ) -> None: """ Update gather indices for all layers. Args: mappings_per_layer: mappings_per_layer[layer_id] = [(cpu_block_id, gpu_slot), ...] """ for layer_id, mappings in enumerate(mappings_per_layer): for cpu_block_id, gpu_slot in mappings: self.gather_indices_cpu[layer_id, gpu_slot] = cpu_block_id # Batch copy all layers self.gather_indices_gpu.copy_(self.gather_indices_cpu, non_blocking=True) def clear_gather_indices(self, layer_id: Optional[int] = None) -> None: """ Clear gather indices (set all to -1, meaning no-op). Args: layer_id: If provided, clear only this layer; otherwise clear all """ if layer_id is not None: self.gather_indices_cpu[layer_id].fill_(-1) self.gather_indices_gpu[layer_id].fill_(-1) else: self.gather_indices_cpu.fill_(-1) self.gather_indices_gpu.fill_(-1) # ========== Async transfer methods (for prefill, outside CUDA graph) ========== def prefetch_block_async( self, layer_id: int, cpu_block_id: int, gpu_block_id: int, ) -> torch.cuda.Event: """ Async prefetch a single block from CPU to GPU. For use in prefill phase where CUDA graphs are not used. Args: layer_id: Layer index cpu_block_id: Source block in CPU cache gpu_block_id: Destination slot in GPU cache Returns: CUDA event that signals completion """ stream = self._get_next_stream() event = torch.cuda.Event() logger.debug(f"H2D prefetch: layer={layer_id}, CPU[{cpu_block_id}] -> GPU[{gpu_block_id}]") with torch.cuda.stream(stream): # K cache self.k_cache_gpu[layer_id, gpu_block_id].copy_( self.k_cache_cpu[layer_id, cpu_block_id], non_blocking=True ) # V cache self.v_cache_gpu[layer_id, gpu_block_id].copy_( self.v_cache_cpu[layer_id, cpu_block_id], non_blocking=True ) event.record() self.pending_events[(layer_id, gpu_block_id)] = event return event def prefetch_blocks_batch_async( self, transfers: List[Tuple[int, int, int]], # [(layer_id, cpu_block_id, gpu_block_id), ...] ) -> List[torch.cuda.Event]: """ Batch async prefetch multiple blocks. Args: transfers: List of (layer_id, cpu_block_id, gpu_block_id) tuples Returns: List of CUDA events for each transfer """ events = [] for layer_id, cpu_block_id, gpu_block_id in transfers: event = self.prefetch_block_async(layer_id, cpu_block_id, gpu_block_id) events.append(event) return events def offload_block_async( self, layer_id: int, gpu_block_id: int, cpu_block_id: int, ) -> torch.cuda.Event: """ Async offload a block from GPU to CPU. Args: layer_id: Layer index gpu_block_id: Source slot in GPU cache cpu_block_id: Destination block in CPU cache Returns: CUDA event that signals completion """ stream = self._get_next_stream() event = torch.cuda.Event() logger.debug(f"D2H offload: layer={layer_id}, GPU[{gpu_block_id}] -> CPU[{cpu_block_id}]") with torch.cuda.stream(stream): # Wait for any compute using this block stream.wait_stream(self.compute_stream) # K cache self.k_cache_cpu[layer_id, cpu_block_id].copy_( self.k_cache_gpu[layer_id, gpu_block_id], non_blocking=True ) # V cache self.v_cache_cpu[layer_id, cpu_block_id].copy_( self.v_cache_gpu[layer_id, gpu_block_id], non_blocking=True ) event.record() return event def offload_blocks_batch_async( self, transfers: List[Tuple[int, int, int]], # [(layer_id, gpu_block_id, cpu_block_id), ...] ) -> List[torch.cuda.Event]: """ Batch async offload multiple blocks. Args: transfers: List of (layer_id, gpu_block_id, cpu_block_id) tuples Returns: List of CUDA events """ events = [] for layer_id, gpu_block_id, cpu_block_id in transfers: event = self.offload_block_async(layer_id, gpu_block_id, cpu_block_id) events.append(event) return events # ========== Chunked Decode: Load CPU blocks to GPU slots ========== def load_cpu_blocks_to_gpu_slots( self, layer_id: int, cpu_block_ids: List[int], gpu_slot_ids: List[int], ) -> None: """ Load CPU blocks to specific GPU slots for chunked decode. Uses the main GPU KV cache slots, not a separate temp buffer. This is the same mechanism as chunked prefill uses. Args: layer_id: Layer index cpu_block_ids: List of CPU block IDs to load gpu_slot_ids: List of GPU slot IDs to load into (must be same length) """ assert len(cpu_block_ids) == len(gpu_slot_ids) if cpu_block_ids: logger.debug(f"H2D chunked load: layer={layer_id}, CPU{cpu_block_ids} -> GPU{gpu_slot_ids}") stream = self._get_next_stream() with torch.cuda.stream(stream): for cpu_block_id, gpu_slot in zip(cpu_block_ids, gpu_slot_ids): # Copy from pinned CPU memory to GPU KV cache slot self.k_cache_gpu[layer_id, gpu_slot].copy_( self.k_cache_cpu[layer_id, cpu_block_id], non_blocking=True ) self.v_cache_gpu[layer_id, gpu_slot].copy_( self.v_cache_cpu[layer_id, cpu_block_id], non_blocking=True ) # Wait for transfer to complete stream.synchronize() def load_cpu_blocks_to_gpu_slots_async( self, layer_id: int, cpu_block_ids: List[int], gpu_slot_ids: List[int], ) -> torch.cuda.Event: """ Async version: Load CPU blocks to GPU slots. Args: layer_id: Layer index cpu_block_ids: List of CPU block IDs to load gpu_slot_ids: List of GPU slot IDs to load into Returns: CUDA event to wait on """ assert len(cpu_block_ids) == len(gpu_slot_ids) if cpu_block_ids: logger.debug(f"H2D chunked load async: layer={layer_id}, CPU{cpu_block_ids} -> GPU{gpu_slot_ids}") stream = self._get_next_stream() event = torch.cuda.Event() with torch.cuda.stream(stream): for cpu_block_id, gpu_slot in zip(cpu_block_ids, gpu_slot_ids): self.k_cache_gpu[layer_id, gpu_slot].copy_( self.k_cache_cpu[layer_id, cpu_block_id], non_blocking=True ) self.v_cache_gpu[layer_id, gpu_slot].copy_( self.v_cache_cpu[layer_id, cpu_block_id], non_blocking=True ) event.record() return event def load_cpu_blocks_to_gpu_slots_all_layers( self, cpu_block_ids: List[int], gpu_slot_ids: List[int], ) -> None: """ Load CPU blocks to GPU slots for ALL layers at once. More efficient than per-layer loading when we know the mapping upfront. Args: cpu_block_ids: List of CPU block IDs to load gpu_slot_ids: List of GPU slot IDs to load into """ assert len(cpu_block_ids) == len(gpu_slot_ids) if cpu_block_ids: logger.debug(f"H2D all layers: CPU{cpu_block_ids} -> GPU{gpu_slot_ids}") stream = self._get_next_stream() with torch.cuda.stream(stream): for cpu_block_id, gpu_slot in zip(cpu_block_ids, gpu_slot_ids): # Copy all layers at once self.k_cache_gpu[:, gpu_slot].copy_( self.k_cache_cpu[:, cpu_block_id], non_blocking=True ) self.v_cache_gpu[:, gpu_slot].copy_( self.v_cache_cpu[:, cpu_block_id], non_blocking=True ) stream.synchronize() # ========== Synchronization methods ========== def wait_for_block(self, layer_id: int, gpu_block_id: int) -> None: """Wait for a specific block's transfer to complete.""" key = (layer_id, gpu_block_id) if key in self.pending_events: self.pending_events[key].synchronize() del self.pending_events[key] def wait_all_transfers(self) -> None: """Wait for all pending transfers to complete.""" for stream in self.transfer_streams: stream.synchronize() self.pending_events.clear() def sync_indices(self) -> None: """Synchronize to ensure all index updates are complete.""" torch.cuda.current_stream().synchronize() # ========== Cache access methods ========== def get_layer_cache(self, layer_id: int) -> Tuple[Tensor, Tensor]: """ Get GPU K/V cache tensors for a specific layer. Returns: (k_cache, v_cache) tensors for the layer Shape: [num_gpu_blocks, block_size, kv_heads, head_dim] """ return self.k_cache_gpu[layer_id], self.v_cache_gpu[layer_id] def get_all_gpu_cache(self) -> Tuple[Tensor, Tensor]: """ Get full GPU K/V cache tensors. Returns: (k_cache, v_cache) tensors Shape: [num_layers, num_gpu_blocks, block_size, kv_heads, head_dim] """ return self.k_cache_gpu, self.v_cache_gpu def get_cpu_block( self, layer_id: int, cpu_block_id: int, ) -> Tuple[Tensor, Tensor]: """ Get a specific CPU block's K/V cache. Returns: (k_cache, v_cache) for the block Shape: [block_size, kv_heads, head_dim] """ return ( self.k_cache_cpu[layer_id, cpu_block_id], self.v_cache_cpu[layer_id, cpu_block_id], ) # ========== Memory info ========== def gpu_memory_bytes(self) -> int: """Total GPU memory used by KV caches.""" return ( self.k_cache_gpu.numel() * self.k_cache_gpu.element_size() + self.v_cache_gpu.numel() * self.v_cache_gpu.element_size() + self.gather_indices_gpu.numel() * self.gather_indices_gpu.element_size() ) def cpu_memory_bytes(self) -> int: """Total CPU memory used by KV caches.""" return ( self.k_cache_cpu.numel() * self.k_cache_cpu.element_size() + self.v_cache_cpu.numel() * self.v_cache_cpu.element_size() + self.gather_indices_cpu.numel() * self.gather_indices_cpu.element_size() ) def __repr__(self) -> str: return ( f"OffloadEngine(\n" f" num_layers={self.num_layers},\n" f" num_gpu_blocks={self.num_gpu_blocks},\n" f" num_cpu_blocks={self.num_cpu_blocks},\n" f" block_size={self.block_size},\n" f" kv_heads={self.num_kv_heads},\n" f" head_dim={self.head_dim},\n" f" dtype={self.dtype},\n" f" ping_size={self.ping_size}, pong_size={self.pong_size},\n" f" gpu_memory={self.gpu_memory_bytes() / 1024**2:.1f}MB,\n" f" cpu_memory={self.cpu_memory_bytes() / 1024**2:.1f}MB\n" f")" ) # ========== Ping-Pong 双缓冲方法 ========== def load_to_ping(self, cpu_block_ids: List[int]) -> None: """ 异步加载CPU blocks到Ping buffer。 Args: cpu_block_ids: 要加载的CPU block IDs列表 """ if not cpu_block_ids: self.ping_ready.record(self.pingpong_stream) return num_to_load = min(len(cpu_block_ids), self.ping_size) logger.debug(f"Ping load: CPU{cpu_block_ids[:num_to_load]} -> GPU ping slots {self.ping_slots[:num_to_load]}") with torch.cuda.stream(self.pingpong_stream): for i in range(num_to_load): cpu_id = cpu_block_ids[i] gpu_slot = self.ping_slots[i] # 所有层一起复制 self.k_cache_gpu[:, gpu_slot].copy_( self.k_cache_cpu[:, cpu_id], non_blocking=True ) self.v_cache_gpu[:, gpu_slot].copy_( self.v_cache_cpu[:, cpu_id], non_blocking=True ) self.ping_ready.record(self.pingpong_stream) def load_to_pong(self, cpu_block_ids: List[int]) -> None: """ 异步加载CPU blocks到Pong buffer。 Args: cpu_block_ids: 要加载的CPU block IDs列表 """ if not cpu_block_ids: self.pong_ready.record(self.pingpong_stream) return num_to_load = min(len(cpu_block_ids), self.pong_size) logger.debug(f"Pong load: CPU{cpu_block_ids[:num_to_load]} -> GPU pong slots {self.pong_slots[:num_to_load]}") with torch.cuda.stream(self.pingpong_stream): for i in range(num_to_load): cpu_id = cpu_block_ids[i] gpu_slot = self.pong_slots[i] self.k_cache_gpu[:, gpu_slot].copy_( self.k_cache_cpu[:, cpu_id], non_blocking=True ) self.v_cache_gpu[:, gpu_slot].copy_( self.v_cache_cpu[:, cpu_id], non_blocking=True ) self.pong_ready.record(self.pingpong_stream) def wait_ping(self) -> None: """等待Ping buffer加载完成。""" self.compute_stream.wait_event(self.ping_ready) def wait_pong(self) -> None: """等待Pong buffer加载完成。""" self.compute_stream.wait_event(self.pong_ready) def offload_buffer_to_cpu( self, buffer: str, cpu_block_ids: List[int], ) -> None: """ 异步将buffer中的KV offload到CPU。 Args: buffer: "ping" 或 "pong" cpu_block_ids: 目标CPU block IDs列表 """ slots = self.ping_slots if buffer == "ping" else self.pong_slots event = self.ping_offload_done if buffer == "ping" else self.pong_offload_done if not cpu_block_ids: event.record(self.pingpong_stream) return num_to_offload = min(len(cpu_block_ids), len(slots)) logger.debug(f"{buffer.capitalize()} offload: GPU {slots[:num_to_offload]} -> CPU{cpu_block_ids[:num_to_offload]}") with torch.cuda.stream(self.pingpong_stream): # 等待计算完成 self.pingpong_stream.wait_stream(self.compute_stream) for i in range(num_to_offload): gpu_slot = slots[i] cpu_id = cpu_block_ids[i] self.k_cache_cpu[:, cpu_id].copy_( self.k_cache_gpu[:, gpu_slot], non_blocking=True ) self.v_cache_cpu[:, cpu_id].copy_( self.v_cache_gpu[:, gpu_slot], non_blocking=True ) event.record(self.pingpong_stream) def offload_slot_to_cpu( self, gpu_slot: int, cpu_block_id: int, ) -> None: """ 异步将单个GPU slot的KV offload到CPU。 Args: gpu_slot: GPU slot ID cpu_block_id: 目标CPU block ID """ logger.debug(f"Slot offload: GPU[{gpu_slot}] -> CPU[{cpu_block_id}]") with torch.cuda.stream(self.pingpong_stream): self.pingpong_stream.wait_stream(self.compute_stream) self.k_cache_cpu[:, cpu_block_id].copy_( self.k_cache_gpu[:, gpu_slot], non_blocking=True ) self.v_cache_cpu[:, cpu_block_id].copy_( self.v_cache_gpu[:, gpu_slot], non_blocking=True ) def wait_ping_offload_done(self) -> None: """等待Ping buffer offload完成。""" self.compute_stream.wait_event(self.ping_offload_done) def wait_pong_offload_done(self) -> None: """等待Pong buffer offload完成。""" self.compute_stream.wait_event(self.pong_offload_done) def wait_all_offload_done(self) -> None: """等待所有offload完成。""" self.pingpong_stream.synchronize() def get_kv_for_ping_slots( self, layer_id: int, num_slots: int, ) -> Tuple[Tensor, Tensor]: """ 获取Ping buffer中指定数量slots的KV。 Args: layer_id: 层ID num_slots: 需要的slot数量 Returns: (k_cache, v_cache),shape: [1, num_slots * block_size, kv_heads, head_dim] """ slots = self.ping_slots[:num_slots] k = self.k_cache_gpu[layer_id, slots] # [num_slots, block_size, heads, dim] v = self.v_cache_gpu[layer_id, slots] # Reshape: [num_slots, block_size, heads, dim] -> [1, num_slots*block_size, heads, dim] k = k.reshape(1, -1, self.num_kv_heads, self.head_dim) v = v.reshape(1, -1, self.num_kv_heads, self.head_dim) return k, v def get_kv_for_pong_slots( self, layer_id: int, num_slots: int, ) -> Tuple[Tensor, Tensor]: """ 获取Pong buffer中指定数量slots的KV。 Args: layer_id: 层ID num_slots: 需要的slot数量 Returns: (k_cache, v_cache),shape: [1, num_slots * block_size, kv_heads, head_dim] """ slots = self.pong_slots[:num_slots] k = self.k_cache_gpu[layer_id, slots] v = self.v_cache_gpu[layer_id, slots] k = k.reshape(1, -1, self.num_kv_heads, self.head_dim) v = v.reshape(1, -1, self.num_kv_heads, self.head_dim) return k, v def get_kv_for_slots( self, layer_id: int, gpu_slots: List[int], ) -> Tuple[Tensor, Tensor]: """ 获取指定GPU slots的KV。 Args: layer_id: 层ID gpu_slots: GPU slot IDs列表 Returns: (k_cache, v_cache),shape: [1, len(slots) * block_size, kv_heads, head_dim] """ if not gpu_slots: return None, None k = self.k_cache_gpu[layer_id, gpu_slots] v = self.v_cache_gpu[layer_id, gpu_slots] k = k.reshape(1, -1, self.num_kv_heads, self.head_dim) v = v.reshape(1, -1, self.num_kv_heads, self.head_dim) return k, v