import atexit from dataclasses import fields from time import perf_counter, perf_counter_ns from tqdm.auto import tqdm from transformers import AutoTokenizer import torch.multiprocessing as mp from nanovllm.config import Config from nanovllm.sampling_params import SamplingParams from nanovllm.engine.sequence import Sequence from nanovllm.engine.scheduler import Scheduler from nanovllm.engine.model_runner import ModelRunner from nanovllm.utils.observer import Observer class LLMEngine: def __init__(self, model, **kwargs): config_fields = {field.name for field in fields(Config)} config_kwargs = {k: v for k, v in kwargs.items() if k in config_fields} config = Config(model, **config_kwargs) self.ps = [] self.events = [] ctx = mp.get_context("spawn") for i in range(1, config.tensor_parallel_size): event = ctx.Event() process = ctx.Process(target=ModelRunner, args=(config, i, event)) process.start() self.ps.append(process) self.events.append(event) self.model_runner = ModelRunner(config, 0, self.events) self.tokenizer = AutoTokenizer.from_pretrained(config.model, use_fast=True) config.eos = self.tokenizer.eos_token_id self.scheduler = Scheduler(config) atexit.register(self.exit) def exit(self): self.model_runner.call("exit") del self.model_runner for p in self.ps: p.join() def add_request(self, prompt: str | list[int], sampling_params: SamplingParams): if isinstance(prompt, str): prompt = self.tokenizer.encode(prompt) seq = Sequence(prompt, sampling_params) self.scheduler.add(seq) def step(self): seqs, is_prefill = self.scheduler.schedule() if not is_prefill: # The end of the prefill mode. Get TTFT. if Observer.ttft_start != 0: Observer.ttft = perf_counter_ns() - Observer.ttft_start Observer.reset_ttft() # The start of the decode mode. Get TPOT. if Observer.tpot_start != 0: Observer.tpot = perf_counter_ns() - Observer.tpot_start Observer.tpot_start = perf_counter_ns() token_ids = self.model_runner.call("run", seqs, is_prefill) self.scheduler.postprocess(seqs, token_ids) outputs = [(seq.seq_id, seq.completion_token_ids) for seq in seqs if seq.is_finished] num_tokens = sum(len(seq) for seq in seqs) if is_prefill else -len(seqs) return outputs, num_tokens def is_finished(self): return self.scheduler.is_finished() def generate( self, prompts: list[str] | list[list[int]], sampling_params: SamplingParams | list[SamplingParams], use_tqdm: bool = True, ) -> list[str]: Observer.complete_reset() if use_tqdm: pbar = tqdm(total=len(prompts), desc="Generating", dynamic_ncols=True) if not isinstance(sampling_params, list): sampling_params = [sampling_params] * len(prompts) for prompt, sp in zip(prompts, sampling_params): self.add_request(prompt, sp) outputs = {} prefill_throughput = decode_throughput = 0. while not self.is_finished(): t = perf_counter() output, num_tokens = self.step() if use_tqdm: if num_tokens > 0: prefill_throughput = num_tokens / (perf_counter() - t) else: decode_throughput = -num_tokens / (perf_counter() - t) pbar.set_postfix({ "Prefill": f"{int(prefill_throughput)}tok/s", "Decode": f"{int(decode_throughput)}tok/s", "ttft": f"{float(Observer.ttft) / 1e6}ms", "tpot": f"{float(Observer.tpot) / 1e6}ms", }) for seq_id, token_ids in output: outputs[seq_id] = token_ids if use_tqdm: pbar.update(1) outputs = [outputs[seq_id] for seq_id in sorted(outputs.keys())] outputs = [{"text": self.tokenizer.decode(token_ids), "token_ids": token_ids} for token_ids in outputs] if use_tqdm: pbar.close() return outputs