import os import time from random import randint, seed from nanovllm import LLM, SamplingParams def bench_decode(llm, num_seqs, input_len, output_len): """Benchmark decode performance""" seed(0) prompt_token_ids = [[randint(0, 10000) for _ in range(input_len)] for _ in range(num_seqs)] sampling_params = SamplingParams(temperature=0.6, ignore_eos=True, max_tokens=output_len) t = time.time() llm.generate(prompt_token_ids, sampling_params, use_tqdm=False) t = time.time() - t # Calculate metrics prefill_tokens = num_seqs * input_len decode_tokens = num_seqs * output_len # Approximate: assume prefill takes ~input_len/prefill_speed, rest is decode # For more accurate measurement, we'd need internal timing decode_throughput = decode_tokens / t # This includes prefill time, so it's a lower bound print(f"[Decode] Input: {num_seqs}x{input_len}tok, Output: {decode_tokens}tok, Time: {t:.2f}s") print(f" Throughput: {decode_throughput:.2f} tok/s (includes prefill overhead)") def bench_prefill(llm, num_seqs, input_len): """Benchmark prefill performance""" seed(0) # Fixed length input, minimal output to focus on prefill prompt_token_ids = [[randint(0, 10000) for _ in range(input_len)] for _ in range(num_seqs)] sampling_params = SamplingParams(temperature=0.6, ignore_eos=True, max_tokens=1) t = time.time() llm.generate(prompt_token_ids, sampling_params, use_tqdm=False) t = time.time() - t total_input_tokens = num_seqs * input_len throughput = total_input_tokens / t print(f"[Prefill] Input: {total_input_tokens}tok ({num_seqs}x{input_len}), Time: {t:.2f}s, Throughput: {throughput:.2f}tok/s") def main(): import argparse from nanovllm.config import SparsePolicyType parser = argparse.ArgumentParser(description="Benchmark CPU offload performance") parser.add_argument("--enable-quest", action="store_true", help="Enable Quest sparse attention for decode") parser.add_argument("--topk", type=int, default=16, help="Top-K blocks for Quest (default: 16)") parser.add_argument("--threshold", type=int, default=4, help="Apply sparse only when blocks > threshold (default: 4)") parser.add_argument("--input-len", type=int, default=None, help="Input length in tokens") parser.add_argument("--output-len", type=int, default=64, help="Output length for decode benchmark (default: 64)") parser.add_argument("--num-gpu-blocks", type=int, default=6, help="Number of GPU blocks (default: 6)") parser.add_argument("--max-len", type=int, default=32*1024, help="Max model length (default: 32K)") parser.add_argument("--bench-decode", action="store_true", help="Run decode benchmark (default: prefill only)") parser.add_argument("--bench-all", action="store_true", help="Run both prefill and decode benchmarks") args = parser.parse_args() path = os.path.expanduser("~/models/Qwen3-4B-Instruct-2507/") max_len = args.max_len # Setup policy configuration if args.enable_quest: sparse_policy = SparsePolicyType.QUEST print(f"\n[Quest Sparse Attention] topk={args.topk}, threshold={args.threshold}") else: sparse_policy = SparsePolicyType.FULL print("\n[Full Attention] baseline (no sparse)") print(f"[Config] max_len={max_len}, num_gpu_blocks={args.num_gpu_blocks}") llm = LLM( path, enforce_eager=False, max_model_len=max_len, max_num_batched_tokens=max_len, enable_cpu_offload=True, num_gpu_blocks=args.num_gpu_blocks, sparse_policy=sparse_policy, sparse_topk_blocks=args.topk, sparse_threshold_blocks=args.threshold, ) # Warmup print("\nWarming up...") llm.generate(["Benchmark warmup: "], SamplingParams(max_tokens=10)) # Default input lengths prefill_input_len = args.input_len if args.input_len else max_len - 1 decode_input_len = args.input_len if args.input_len else max_len - args.output_len # Determine which benchmarks to run run_prefill = not args.bench_decode or args.bench_all run_decode = args.bench_decode or args.bench_all if run_prefill: print("\n" + "=" * 60) print("Prefill Benchmark (CPU Offload)") print("=" * 60) bench_prefill(llm, num_seqs=1, input_len=prefill_input_len) if run_decode: print("\n" + "=" * 60) print("Decode Benchmark (CPU Offload)") print("=" * 60) bench_decode(llm, num_seqs=1, input_len=decode_input_len, output_len=args.output_len) if __name__ == "__main__": main()