import torch from torch import nn class Sampler(nn.Module): def __init__(self): super().__init__() def forward(self, logits: torch.Tensor, temperatures: torch.Tensor | None = None): logits = logits.to(torch.float) if temperatures is not None: logits.div_(temperatures.unsqueeze(dim=1)) probs = torch.softmax(logits, dim=-1, dtype=torch.float) # logprobs = torch.log_softmax(logits, dim=-1, dtype=torch.float) sampled_tokens = probs.div_(torch.empty_like(probs).exponential_(1)).argmax(dim=-1) return sampled_tokens