import torch from torch import nn class Sampler(nn.Module): def __init__(self): super().__init__() def forward(self, logits: torch.Tensor, temperatures: torch.Tensor): logits = logits.to(torch.float) greedy_tokens = logits.argmax(dim=-1) logits.div_(temperatures.unsqueeze(dim=1)) probs = torch.softmax(logits, dim=-1, dtype=torch.float) # logprobs = torch.log_softmax(logits, dim=-1, dtype=torch.float) sample_tokens = probs.div_(torch.empty_like(probs).exponential_(1)).argmax(dim=-1) return torch.where(temperatures == 0, greedy_tokens, sample_tokens)