import os import time from random import randint, seed from nanovllm import LLM, SamplingParams def bench_decode(llm, num_seqs, input_len, output_len): """Benchmark decode performance (original test)""" seed(0) prompt_token_ids = [[randint(0, 10000) for _ in range(input_len)] for _ in range(num_seqs)] sampling_params = SamplingParams(temperature=0.6, ignore_eos=True, max_tokens=output_len) t = time.time() llm.generate(prompt_token_ids, sampling_params, use_tqdm=False) t = time.time() - t total_output_tokens = num_seqs * output_len throughput = total_output_tokens / t print(f"[Decode] Input: {num_seqs}x{input_len}tok, Output: {total_output_tokens}tok, Time: {t:.2f}s, Throughput: {throughput:.2f}tok/s") def bench_prefill(llm, num_seqs, input_len): """Benchmark prefill performance""" seed(0) # Fixed length input, minimal output to focus on prefill prompt_token_ids = [[randint(0, 10000) for _ in range(input_len)] for _ in range(num_seqs)] sampling_params = SamplingParams(temperature=0.6, ignore_eos=True, max_tokens=1) t = time.time() llm.generate(prompt_token_ids, sampling_params, use_tqdm=False) t = time.time() - t total_input_tokens = num_seqs * input_len throughput = total_input_tokens / t print(f"[Prefill] Input: {total_input_tokens}tok ({num_seqs}x{input_len}), Time: {t:.2f}s, Throughput: {throughput:.2f}tok/s") def main(): import argparse parser = argparse.ArgumentParser() parser.add_argument("--no-sparse", action="store_true", help="Disable sparse attention (baseline)") parser.add_argument("--topk", type=int, default=8, help="Top-K blocks for Quest") parser.add_argument("--input-len", type=int, default=None, help="Input length in tokens (default: max_len - 1 for prefill, max_len - output_len for decode)") parser.add_argument("--output-len", type=int, default=128, help="Output length in tokens") args = parser.parse_args() path = os.path.expanduser("~/models/Qwen3-4B-Instruct-2507/") # Note: Qwen3-4B-Instruct-2507 max_position_embeddings = 262144 max_len = 32 * 1024 # 128K tokens # Setup policy configuration if not args.no_sparse: prefill_policy = "full" # Full attention for prefill decode_policy = "quest" # Quest Top-K for decode print(f"\n[Quest Sparse Attention] prefill={prefill_policy}, decode={decode_policy}, topk={args.topk}") else: prefill_policy = "full" # Full attention for both phases decode_policy = "full" print("\n[Full Attention] No sparse policy (baseline)") llm = LLM( path, enforce_eager=False, max_model_len=max_len, max_num_batched_tokens=max_len, enable_cpu_offload=True, num_gpu_blocks=6, # Small GPU buffer for offload testing prefill_policy=prefill_policy, decode_policy=decode_policy, sparse_topk_blocks=args.topk, sparse_threshold_blocks=4, ) # Warmup llm.generate(["Benchmark: "], SamplingParams()) # Default input lengths based on max_len prefill_input_len = args.input_len if args.input_len else max_len - 1 decode_input_len = args.input_len if args.input_len else max_len - args.output_len print("=" * 60) print("Prefill Benchmark (CPU Offload)") print("=" * 60) bench_prefill(llm, num_seqs=1, input_len=prefill_input_len) # print("=" * 60) # print("Decode Benchmark (CPU Offload)") # print("=" * 60) # bench_decode(llm, num_seqs=1, input_len=decode_input_len, output_len=args.output_len) if __name__ == "__main__": main()