import os os.environ["VLLM_USE_V1"] = "1" import time from random import randint, seed from vllm import LLM, SamplingParams def bench_decode(llm, num_seqs, input_len, output_len): """Benchmark decode performance""" seed(0) prompt_token_ids = [[randint(0, 10000) for _ in range(input_len)] for _ in range(num_seqs)] sampling_params = SamplingParams(temperature=0.6, ignore_eos=True, max_tokens=output_len) prompt_token_ids = [dict(prompt_token_ids=p) for p in prompt_token_ids] t = time.time() llm.generate(prompt_token_ids, sampling_params, use_tqdm=False) t = time.time() - t # Calculate metrics prefill_tokens = num_seqs * input_len decode_tokens = num_seqs * output_len decode_throughput = decode_tokens / t print(f"[Decode] Input: {num_seqs}x{input_len}tok, Output: {decode_tokens}tok, Time: {t:.2f}s") print(f" Throughput: {decode_throughput:.2f} tok/s (includes prefill overhead)") def bench_prefill(llm, num_seqs, input_len): """Benchmark prefill performance""" seed(0) # Fixed length input, minimal output to focus on prefill prompt_token_ids = [[randint(0, 10000) for _ in range(input_len)] for _ in range(num_seqs)] sampling_params = SamplingParams(temperature=0.6, ignore_eos=True, max_tokens=1) prompt_token_ids = [dict(prompt_token_ids=p) for p in prompt_token_ids] t = time.time() llm.generate(prompt_token_ids, sampling_params, use_tqdm=False) t = time.time() - t total_input_tokens = num_seqs * input_len throughput = total_input_tokens / t print(f"[Prefill] Input: {total_input_tokens}tok ({num_seqs}x{input_len}), Time: {t:.2f}s, Throughput: {throughput:.2f}tok/s") def main(): import argparse parser = argparse.ArgumentParser(description="Benchmark vLLM performance (for comparison)") parser.add_argument("--input-len", type=int, default=None, help="Input length in tokens") parser.add_argument("--output-len", type=int, default=64, help="Output length for decode benchmark (default: 64)") parser.add_argument("--max-len", type=int, default=32*1024, help="Max model length (default: 32K)") parser.add_argument("--bench-decode", action="store_true", help="Run decode benchmark (default: prefill only)") parser.add_argument("--bench-all", action="store_true", help="Run both prefill and decode benchmarks") args = parser.parse_args() path = os.path.expanduser("~/models/Qwen3-4B-Instruct-2507/") max_len = args.max_len print(f"\n[vLLM] max_len={max_len}") llm = LLM( path, enforce_eager=False, max_model_len=max_len, max_num_seqs=128, gpu_memory_utilization=0.9, ) # Warmup print("\nWarming up...") llm.generate([dict(prompt_token_ids=[0, 1, 2])], SamplingParams(max_tokens=10)) # Default input lengths prefill_input_len = args.input_len if args.input_len else max_len - 1 decode_input_len = args.input_len if args.input_len else max_len - args.output_len # Determine which benchmarks to run run_prefill = not args.bench_decode or args.bench_all run_decode = args.bench_decode or args.bench_all if run_prefill: print("\n" + "=" * 60) print("Prefill Benchmark (vLLM)") print("=" * 60) bench_prefill(llm, num_seqs=1, input_len=prefill_input_len) if run_decode: print("\n" + "=" * 60) print("Decode Benchmark (vLLM)") print("=" * 60) bench_decode(llm, num_seqs=1, input_len=decode_input_len, output_len=args.output_len) if __name__ == "__main__": main()