import torch from torch import nn import torch.nn.functional as F import torch.distributed as dist def divide(numerator, denominator): assert numerator % denominator == 0 return numerator // denominator class LinearBase(nn.Module): def __init__( self, input_size: int, output_size: int, bias: bool = False, tp_dim: int | None = None, ): super().__init__() self.tp_dim = tp_dim self.tp_rank = dist.get_rank() self.tp_size = dist.get_world_size() self.weight = nn.Parameter(torch.empty(output_size, input_size)) self.weight.weight_loader = self.weight_loader if bias: self.bias = nn.Parameter(torch.empty(output_size)) self.bias.weight_loader = self.weight_loader else: self.register_parameter("bias", None) def forward(self, x: torch.Tensor) -> torch.Tensor: raise NotImplementedError class ReplicatedLinear(LinearBase): def __init__( self, input_size: int, output_size: int, bias: bool = False, ): super().__init__(input_size, output_size, bias) def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor): param.data.copy_(loaded_weight) def forward(self, x: torch.Tensor) -> torch.Tensor: return F.linear(x, self.weight, self.bias) class ColumnParallelLinear(LinearBase): def __init__( self, input_size: int, output_size: int, bias: bool = False, ): tp_size = dist.get_world_size() super().__init__(input_size, divide(output_size, tp_size), bias, 0) def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor): param_data = param.data shard_size = param_data.size(self.tp_dim) start_idx = self.tp_rank * shard_size loaded_weight = loaded_weight.narrow(self.tp_dim, start_idx, shard_size) param_data.copy_(loaded_weight) def forward(self, x: torch.Tensor) -> torch.Tensor: return F.linear(x, self.weight, self.bias) class MergedColumnParallelLinear(ColumnParallelLinear): def __init__( self, input_size: int, output_sizes: list[int], bias: bool = False, ): self.output_sizes = output_sizes super().__init__(input_size, sum(output_sizes), bias) def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor, loaded_shard_id: int): param_data = param.data shard_offset = sum(self.output_sizes[:loaded_shard_id]) // self.tp_size shard_size = self.output_sizes[loaded_shard_id] // self.tp_size param_data = param_data.narrow(self.tp_dim, shard_offset, shard_size) loaded_weight = loaded_weight.chunk(self.tp_size, self.tp_dim)[self.tp_rank] param_data.copy_(loaded_weight) class QKVParallelLinear(ColumnParallelLinear): def __init__( self, hidden_size: int, head_size: int, total_num_heads: int, total_num_kv_heads: int | None = None, bias: bool = False, ): tp_size = dist.get_world_size() total_num_kv_heads = total_num_kv_heads or total_num_heads self.head_size = head_size self.num_heads = divide(total_num_heads, tp_size) self.num_kv_heads = divide(total_num_kv_heads, tp_size) output_size = (total_num_heads + 2 * total_num_kv_heads) * self.head_size super().__init__(hidden_size, output_size, bias) def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor, loaded_shard_id: str): param_data = param.data assert loaded_shard_id in ["q", "k", "v"] if loaded_shard_id == "q": shard_size = self.num_heads * self.head_size shard_offset = 0 elif loaded_shard_id == "k": shard_size = self.num_kv_heads * self.head_size shard_offset = self.num_heads * self.head_size else: shard_size = self.num_kv_heads * self.head_size shard_offset = self.num_heads * self.head_size + self.num_kv_heads * self.head_size param_data = param_data.narrow(self.tp_dim, shard_offset, shard_size) loaded_weight = loaded_weight.chunk(self.tp_size, self.tp_dim)[self.tp_rank] param_data.copy_(loaded_weight) class RowParallelLinear(LinearBase): def __init__( self, input_size: int, output_size: int, bias: bool = False, ): tp_size = dist.get_world_size() super().__init__(divide(input_size, tp_size), output_size, bias, 1) def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor): param_data = param.data shard_size = param_data.size(self.tp_dim) start_idx = self.tp_rank * shard_size loaded_weight = loaded_weight.narrow(self.tp_dim, start_idx, shard_size) param_data.copy_(loaded_weight) def forward(self, x: torch.Tensor) -> torch.Tensor: y = F.linear(x, self.weight, self.bias if self.tp_rank == 0 else None) if self.tp_size > 1: dist.all_reduce(y) return y