""" Test alignment between nanovllm and custom torch Qwen3 implementation. Compares attention layer outputs and QKV tensors to verify correctness. Usage: python test_align.py # Without CPU offload python test_align.py --enable-offload # With CPU offload python test_align.py --input-len 4096 # Custom input length """ import os os.environ["NANOVLLM_LOG_LEVEL"] = "WARNING" import argparse import torch from transformers import AutoTokenizer from nanovllm import LLM, SamplingParams from modeling_qwen3 import Qwen3ForCausalLM from utils import generate_needle_prompt # Parse arguments parser = argparse.ArgumentParser() parser.add_argument("--enable-offload", action="store_true", help="Enable CPU offload") parser.add_argument("--input-len", type=int, default=1024 * 12, help="Input sequence length") parser.add_argument("--model-path", type=str, default="~/models/Qwen3-0.6B/", help="Model path") args = parser.parse_args() # Config MODEL_PATH = os.path.expanduser(args.model_path) INPUT_LEN = args.input_len ENABLE_OFFLOAD = args.enable_offload DTYPE = torch.float16 print(f"Config: input_len={INPUT_LEN}, enable_offload={ENABLE_OFFLOAD}") # Storage for captured tensors nanovllm_outputs = {} torch_outputs = {} nanovllm_qkv = {} nanovllm_proj_inputs = {} torch_proj_inputs = {} def make_nanovllm_hook(layer_id: int, storage: dict): def hook(module, inputs, output): attn_output = output[0] if isinstance(output, tuple) else output if attn_output.dim() == 2: attn_output = attn_output.unsqueeze(0) storage[layer_id] = attn_output.detach().clone() return hook def make_nanovllm_qkv_hook(layer_id: int, storage: dict): def hook(module, inputs): q, k, v = inputs[0], inputs[1], inputs[2] storage[layer_id] = { "q": q.detach().clone(), "k": k.detach().clone(), "v": v.detach().clone(), } return hook def make_proj_input_hook(layer_id: int, storage: dict): def hook(module, inputs): hidden = inputs[0] if hidden.dim() == 2: hidden = hidden.unsqueeze(0) storage[layer_id] = hidden.detach().clone() return hook def make_torch_hook(layer_id: int, storage: dict): def hook(module, inputs, output): storage[layer_id] = output[0].detach().clone() return hook def cosine_sim(t1: torch.Tensor, t2: torch.Tensor) -> float: """Cosine similarity between flattened tensors (1.0 = identical).""" return torch.nn.functional.cosine_similarity( t1.flatten().float(), t2.flatten().float(), dim=0 ).item() def compute_qkv_sims(nano_qkv: dict, torch_qkv: dict, num_kv_groups: int): """Compute Q, K, V cosine similarities. Returns (q_sim, k_sim, v_sim).""" nano_q = nano_qkv["q"] torch_q = torch_qkv["q"].squeeze(0).transpose(0, 1) nano_k = nano_qkv["k"] torch_k = torch_qkv["k"].squeeze(0)[::num_kv_groups, :, :].transpose(0, 1) nano_v = nano_qkv["v"] torch_v = torch_qkv["v"].squeeze(0)[::num_kv_groups, :, :].transpose(0, 1) return cosine_sim(nano_q, torch_q), cosine_sim(nano_k, torch_k), cosine_sim(nano_v, torch_v) # ============================================================ # Load models # ============================================================ print("Loading nanovllm model...") llm = LLM( MODEL_PATH, enforce_eager=True, max_model_len=32768, gpu_memory_utilization=0.2, max_num_batched_tokens=32768, enable_cpu_offload=ENABLE_OFFLOAD, dtype="float16", ) num_heads = llm.model_runner.model.model.layers[0].self_attn.num_heads num_kv_heads = llm.model_runner.model.model.layers[0].self_attn.num_kv_heads num_kv_groups = num_heads // num_kv_heads num_layers = len(llm.model_runner.model.model.layers) print("Loading torch model...") torch_model = Qwen3ForCausalLM.from_pretrained(MODEL_PATH, dtype=DTYPE) torch_model = torch_model.to("cuda") torch_model.eval() # ============================================================ # Generate test input # ============================================================ tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH) prompt, _ = generate_needle_prompt(tokenizer=tokenizer, target_length=INPUT_LEN, verbose=True) input_ids = tokenizer.encode(prompt, return_tensors="pt").to("cuda") print(f"Input shape: {input_ids.shape}") # ============================================================ # Register hooks # ============================================================ nanovllm_hooks = [] for layer_idx, layer in enumerate(llm.model_runner.model.model.layers): nanovllm_hooks.append(layer.self_attn.register_forward_hook(make_nanovllm_hook(layer_idx, nanovllm_outputs))) nanovllm_hooks.append(layer.self_attn.attn.register_forward_pre_hook(make_nanovllm_qkv_hook(layer_idx, nanovllm_qkv))) nanovllm_hooks.append(layer.self_attn.qkv_proj.register_forward_pre_hook(make_proj_input_hook(layer_idx, nanovllm_proj_inputs))) torch_hooks = [] for layer_idx, layer in enumerate(torch_model.model.layers): torch_hooks.append(layer.self_attn.register_forward_hook(make_torch_hook(layer_idx, torch_outputs))) torch_hooks.append(layer.self_attn.q_proj.register_forward_pre_hook(make_proj_input_hook(layer_idx, torch_proj_inputs))) # ============================================================ # Run inference # ============================================================ print("Running nanovllm inference...") nanovllm_result = llm.generate([input_ids[0].tolist()], SamplingParams(temperature=0.01, max_tokens=1), use_tqdm=False) print("Running torch inference...") with torch.no_grad(): torch_logits, _, torch_qkv_outputs = torch_model(input_ids, output_qkv_layers=list(range(num_layers))) # ============================================================ # Compare using cosine similarity (1.0 = perfect alignment) # ============================================================ print("\n" + "=" * 70) print(f"{'Layer':<8} {'I':>10} {'Q':>10} {'K':>10} {'V':>10} {'O':>10}") print("=" * 70) all_passed = True threshold = 0.999 # Cosine similarity threshold for layer_idx in range(num_layers): # Input similarity nano_in = nanovllm_proj_inputs[layer_idx] torch_in = torch_proj_inputs[layer_idx] if nano_in.shape != torch_in.shape and nano_in.numel() == torch_in.numel(): torch_in = torch_in.view(nano_in.shape) i_sim = cosine_sim(nano_in, torch_in) # QKV similarities q_sim, k_sim, v_sim = compute_qkv_sims(nanovllm_qkv[layer_idx], torch_qkv_outputs[layer_idx], num_kv_groups) # O similarity nano_out = nanovllm_outputs[layer_idx] torch_out = torch_outputs[layer_idx] if nano_out.shape != torch_out.shape and nano_out.numel() == torch_out.numel(): torch_out = torch_out.view(nano_out.shape) o_sim = cosine_sim(nano_out, torch_out) # Check pass/fail passed = all(s >= threshold for s in [i_sim, q_sim, k_sim, v_sim, o_sim]) all_passed = all_passed and passed status = "" if passed else " *" print(f"Layer {layer_idx:2d}{status:<3} {i_sim:>10.6f} {q_sim:>10.6f} {k_sim:>10.6f} {v_sim:>10.6f} {o_sim:>10.6f}") # ============================================================ # Cleanup and result # ============================================================ for hook in nanovllm_hooks + torch_hooks: hook.remove() print("=" * 70) if all_passed: print("test_align: PASSED (cosine_sim >= 0.999)") else: print("test_align: FAILED (* = cosine_sim < 0.999)")