import os from glob import glob import torch from torch import nn from safetensors import safe_open def default_weight_loader(param: nn.Parameter, loaded_weight: torch.Tensor): param.data.copy_(loaded_weight) def load_model(model: nn.Module, path: str): packed_modules_mapping = getattr(model, "packed_modules_mapping", {}) for file in glob(os.path.join(path, "*.safetensors")): with safe_open(file, "pt", "cpu") as f: for weight_name in f.keys(): for k in packed_modules_mapping: if k in weight_name: v, shard_id = packed_modules_mapping[k] param_name = weight_name.replace(k, v) param = model.get_parameter(param_name) weight_loader = getattr(param, "weight_loader") weight_loader(param, f.get_tensor(weight_name), shard_id) break else: param = model.get_parameter(weight_name) weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, f.get_tensor(weight_name))