Files
nano-vllm/bench_offload.py
2025-12-22 19:53:50 +08:00

142 lines
5.2 KiB
Python

import os
import time
from random import randint, seed
from nanovllm import LLM, SamplingParams
# Import sparse policy classes
from nanovllm.kvcache.sparse.quest import QuestPolicy, QuestConfig, BlockMetadataManager
from nanovllm.kvcache.sparse.hybrid import HybridPolicy
from nanovllm.kvcache.sparse.full_policy import FullAttentionPolicy
def bench_decode(llm, num_seqs, input_len, output_len):
"""Benchmark decode performance (original test)"""
seed(0)
prompt_token_ids = [[randint(0, 10000) for _ in range(input_len)] for _ in range(num_seqs)]
sampling_params = SamplingParams(temperature=0.6, ignore_eos=True, max_tokens=output_len)
t = time.time()
llm.generate(prompt_token_ids, sampling_params, use_tqdm=False)
t = time.time() - t
total_output_tokens = num_seqs * output_len
throughput = total_output_tokens / t
print(f"[Decode] Input: {num_seqs}x{input_len}tok, Output: {total_output_tokens}tok, Time: {t:.2f}s, Throughput: {throughput:.2f}tok/s")
def bench_prefill(llm, num_seqs, input_len):
"""Benchmark prefill performance"""
seed(0)
# Fixed length input, minimal output to focus on prefill
prompt_token_ids = [[randint(0, 10000) for _ in range(input_len)] for _ in range(num_seqs)]
sampling_params = SamplingParams(temperature=0.6, ignore_eos=True, max_tokens=1)
t = time.time()
llm.generate(prompt_token_ids, sampling_params, use_tqdm=False)
t = time.time() - t
total_input_tokens = num_seqs * input_len
throughput = total_input_tokens / t
print(f"[Prefill] Input: {total_input_tokens}tok ({num_seqs}x{input_len}), Time: {t:.2f}s, Throughput: {throughput:.2f}tok/s")
def setup_quest_policy(llm, topk_blocks=8, threshold_blocks=4):
"""
Setup Quest sparse policy for decode phase.
Uses HybridPolicy: Full attention for prefill, Quest Top-K for decode.
"""
import torch
kvcache_manager = llm.model_runner.kvcache_manager
offload_engine = kvcache_manager.offload_engine
# Get model parameters from offload engine
num_layers = offload_engine.num_layers
num_kv_heads = offload_engine.num_kv_heads
head_dim = offload_engine.head_dim
num_cpu_blocks = kvcache_manager.num_cpu_blocks
dtype = offload_engine.k_cache_cpu.dtype
print(f"Setting up Quest policy:")
print(f" num_layers={num_layers}, num_kv_heads={num_kv_heads}, head_dim={head_dim}")
print(f" num_cpu_blocks={num_cpu_blocks}, dtype={dtype}")
print(f" topk_blocks={topk_blocks}, threshold_blocks={threshold_blocks}")
# Create BlockMetadataManager for storing min/max keys
metadata = BlockMetadataManager(
num_blocks=num_cpu_blocks,
num_layers=num_layers,
num_kv_heads=num_kv_heads,
head_dim=head_dim,
dtype=dtype,
)
# Create Quest policy for decode
quest_config = QuestConfig(
topk_blocks=topk_blocks,
threshold_blocks=threshold_blocks,
)
quest_policy = QuestPolicy(quest_config, metadata)
# Create Hybrid policy: Full for prefill, Quest for decode
hybrid_policy = HybridPolicy(
prefill_policy=FullAttentionPolicy(),
decode_policy=quest_policy,
)
# Set the policy
kvcache_manager.set_sparse_policy(hybrid_policy)
print(f" Policy set: HybridPolicy(prefill=Full, decode=Quest)")
return hybrid_policy
def main():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--no-sparse", action="store_true", help="Disable sparse attention (baseline)")
parser.add_argument("--topk", type=int, default=8, help="Top-K blocks for Quest")
parser.add_argument("--input-len", type=int, default=None, help="Input length in tokens (default: max_len - 1 for prefill, max_len - output_len for decode)")
parser.add_argument("--output-len", type=int, default=128, help="Output length in tokens")
args = parser.parse_args()
path = os.path.expanduser("~/models/Qwen3-0.6B/")
# Note: Qwen3-0.6B max_position_embeddings = 40960, cannot exceed this
max_len = 40960
llm = LLM(
path,
enforce_eager=False,
max_model_len=max_len,
max_num_batched_tokens=max_len,
enable_cpu_offload=True,
num_gpu_blocks=8, # Small GPU buffer for offload testing
num_prefetch_blocks=4,
)
if not args.no_sparse:
# Setup Quest policy for decode (Top-K blocks, apply when > 4 blocks)
setup_quest_policy(llm, topk_blocks=args.topk, threshold_blocks=4)
print(f"\n[Quest Sparse Attention] topk={args.topk}")
else:
print("\n[Full Attention] No sparse policy (baseline)")
# Warmup
llm.generate(["Benchmark: "], SamplingParams())
# Default input lengths based on max_len
prefill_input_len = args.input_len if args.input_len else max_len - 1
decode_input_len = args.input_len if args.input_len else max_len - args.output_len
print("=" * 60)
print("Prefill Benchmark (CPU Offload)")
print("=" * 60)
bench_prefill(llm, num_seqs=1, input_len=prefill_input_len)
print("=" * 60)
print("Decode Benchmark (CPU Offload)")
print("=" * 60)
bench_decode(llm, num_seqs=1, input_len=decode_input_len, output_len=args.output_len)
if __name__ == "__main__":
main()