33 lines
1.1 KiB
Python
33 lines
1.1 KiB
Python
import os
|
|
import time
|
|
from random import randint, seed
|
|
from nanovllm import LLM, SamplingParams
|
|
# from vllm import LLM, SamplingParams
|
|
|
|
|
|
def main():
|
|
seed(0)
|
|
num_seqs = 256
|
|
max_input_len = 1024
|
|
max_ouput_len = 1024
|
|
|
|
path = os.path.expanduser("~/huggingface/Qwen3-0.6B/")
|
|
llm = LLM(path, enforce_eager=False, max_model_len=4096)
|
|
|
|
prompt_token_ids = [[randint(0, 10000) for _ in range(randint(100, max_input_len))] for _ in range(num_seqs)]
|
|
sampling_params = [SamplingParams(temperature=0.6, ignore_eos=True, max_tokens=randint(100, max_ouput_len)) for _ in range(num_seqs)]
|
|
# uncomment the following line for vllm
|
|
# prompt_token_ids = [dict(prompt_token_ids=p) for p in prompt_token_ids]
|
|
|
|
llm.generate(["Benchmark: "], SamplingParams())
|
|
t = time.time()
|
|
llm.generate(prompt_token_ids, sampling_params, use_tqdm=False)
|
|
t = (time.time() - t)
|
|
total_tokens = sum(sp.max_tokens for sp in sampling_params)
|
|
throughput = total_tokens / t
|
|
print(f"Total: {total_tokens}tok, Time: {t:.2f}s, Throughput: {throughput:.2f}tok/s")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|