Files
nano-vllm/nanovllm/layers/rotary_embedding.py
GeeeekExplorer df99418f7d simplify
2025-08-31 20:02:51 +08:00

62 lines
1.7 KiB
Python

from functools import lru_cache
import torch
from torch import nn
def apply_rotary_emb(
x: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
) -> torch.Tensor:
x1, x2 = torch.chunk(x.float(), 2, dim=-1)
y1 = x1 * cos - x2 * sin
y2 = x2 * cos + x1 * sin
return torch.cat((y1, y2), dim=-1).to(x.dtype)
class RotaryEmbedding(nn.Module):
def __init__(
self,
head_size: int,
rotary_dim: int,
max_position_embeddings: int,
base: float,
) -> None:
super().__init__()
self.head_size = head_size
assert rotary_dim == head_size
inv_freq = 1.0 / (base**(torch.arange(0, rotary_dim, 2, dtype=torch.float) / rotary_dim))
t = torch.arange(max_position_embeddings, dtype=torch.float)
freqs = torch.einsum("i,j -> ij", t, inv_freq)
cos = freqs.cos()
sin = freqs.sin()
cache = torch.cat((cos, sin), dim=-1).unsqueeze_(1)
self.register_buffer("cos_sin_cache", cache, persistent=False)
@torch.compile
def forward(
self,
positions: torch.Tensor,
query: torch.Tensor,
key: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]:
cos_sin = self.cos_sin_cache[positions]
cos, sin = cos_sin.chunk(2, dim=-1)
query = apply_rotary_emb(query, cos, sin)
key = apply_rotary_emb(key, cos, sin)
return query, key
@lru_cache(1)
def get_rope(
head_size: int,
rotary_dim: int,
max_position: int,
base: float,
rope_scaling: dict | None = None,
):
assert rope_scaling is None
rotary_emb = RotaryEmbedding(head_size, rotary_dim, max_position, base)
return rotary_emb