170 lines
5.4 KiB
Python
170 lines
5.4 KiB
Python
"""
|
|
Test script for chunked attention correctness.
|
|
|
|
Validates that chunked prefill using flash_attn_with_lse + merge_attention_outputs
|
|
produces the same result as full flash_attn_varlen_func.
|
|
|
|
Scenario: Simulating chunked prefill where we process query chunk by chunk.
|
|
For each query chunk i:
|
|
- KV contains all tokens from chunk 0 to chunk i
|
|
- Previous KV chunks (0 to i-1): full attention (no causal mask)
|
|
- Current KV chunk (i): causal attention (diagonal block)
|
|
"""
|
|
|
|
import torch
|
|
from flash_attn.flash_attn_interface import flash_attn_varlen_func, flash_attn_func
|
|
from nanovllm.kvcache.chunked_attention import flash_attn_with_lse, merge_attention_outputs
|
|
|
|
# ============================================================
|
|
# Utility Functions
|
|
# ============================================================
|
|
|
|
def compute_chunked_prefill_for_chunk(
|
|
q_chunk: torch.Tensor,
|
|
kv_chunks: list,
|
|
current_chunk_idx: int,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Compute attention for a single query chunk against all KV chunks up to current.
|
|
|
|
This simulates chunked prefill for query chunk `current_chunk_idx`:
|
|
- KV chunks 0 to current_chunk_idx-1: full attention (all previous tokens visible)
|
|
- KV chunk current_chunk_idx: causal attention (diagonal block)
|
|
|
|
Args:
|
|
q_chunk: [batch, chunk_size, nheads, headdim] - current query chunk
|
|
kv_chunks: List of (k, v) tuples, each [batch, chunk_size, nheads, headdim]
|
|
current_chunk_idx: Index of the current chunk being processed
|
|
|
|
Returns:
|
|
out: [batch, chunk_size, nheads, headdim]
|
|
"""
|
|
accumulated_o = None
|
|
accumulated_lse = None
|
|
|
|
for i in range(current_chunk_idx + 1):
|
|
k_chunk, v_chunk = kv_chunks[i]
|
|
|
|
# Previous chunks: no causal mask (all tokens visible)
|
|
# Current chunk (diagonal): causal mask
|
|
is_diagonal = (i == current_chunk_idx)
|
|
|
|
chunk_o, chunk_lse = flash_attn_with_lse(
|
|
q_chunk, k_chunk, v_chunk, causal=is_diagonal
|
|
)
|
|
|
|
if accumulated_o is None:
|
|
accumulated_o = chunk_o
|
|
accumulated_lse = chunk_lse
|
|
else:
|
|
accumulated_o, accumulated_lse = merge_attention_outputs(
|
|
accumulated_o, accumulated_lse,
|
|
chunk_o, chunk_lse
|
|
)
|
|
|
|
return accumulated_o
|
|
|
|
|
|
def compute_reference_causal(
|
|
q: torch.Tensor,
|
|
k: torch.Tensor,
|
|
v: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Compute reference causal attention using flash_attn_func.
|
|
|
|
Args:
|
|
q, k, v: [batch, seqlen, nheads, headdim]
|
|
|
|
Returns:
|
|
out: [batch, seqlen, nheads, headdim]
|
|
"""
|
|
return flash_attn_func(q, k, v, causal=True)
|
|
|
|
|
|
# ============================================================
|
|
# Main Test Script
|
|
# ============================================================
|
|
|
|
torch.manual_seed(42)
|
|
|
|
# Test configurations: (batch, num_chunks, chunk_size, nheads, headdim)
|
|
TEST_CASES = [
|
|
(1, 4, 256, 8, 128),
|
|
(1, 4, 512, 8, 128),
|
|
(1, 8, 512, 8, 128),
|
|
(1, 4, 1024, 8, 128),
|
|
(1, 4, 1024, 32, 128), # More heads
|
|
(1, 8, 256, 8, 64), # Smaller head dim
|
|
]
|
|
|
|
DTYPES = [torch.float16, torch.bfloat16]
|
|
|
|
print("=" * 80)
|
|
print("Test: Chunked Prefill Attention vs Reference (flash_attn_func causal)")
|
|
print("=" * 80)
|
|
print("Simulating chunked prefill: Q chunk attends to all KV chunks up to current")
|
|
print(" - Previous KV chunks: full attention (no causal mask)")
|
|
print(" - Current KV chunk (diagonal): causal attention")
|
|
print()
|
|
|
|
all_passed = True
|
|
|
|
for dtype in DTYPES:
|
|
print(f"--- dtype: {dtype} ---")
|
|
|
|
for batch, num_chunks, chunk_size, nheads, headdim in TEST_CASES:
|
|
seqlen = num_chunks * chunk_size
|
|
|
|
# Generate full Q, K, V
|
|
q_full = torch.randn(batch, seqlen, nheads, headdim, device="cuda", dtype=dtype)
|
|
k_full = torch.randn(batch, seqlen, nheads, headdim, device="cuda", dtype=dtype)
|
|
v_full = torch.randn(batch, seqlen, nheads, headdim, device="cuda", dtype=dtype)
|
|
|
|
# Reference: full causal attention
|
|
out_ref = compute_reference_causal(q_full, k_full, v_full)
|
|
|
|
# Split into chunks
|
|
q_chunks = [q_full[:, i*chunk_size:(i+1)*chunk_size] for i in range(num_chunks)]
|
|
kv_chunks = [
|
|
(k_full[:, i*chunk_size:(i+1)*chunk_size],
|
|
v_full[:, i*chunk_size:(i+1)*chunk_size])
|
|
for i in range(num_chunks)
|
|
]
|
|
|
|
# Compute chunked prefill for each query chunk
|
|
out_chunks = []
|
|
for chunk_idx in range(num_chunks):
|
|
chunk_out = compute_chunked_prefill_for_chunk(
|
|
q_chunks[chunk_idx],
|
|
kv_chunks,
|
|
chunk_idx,
|
|
)
|
|
out_chunks.append(chunk_out)
|
|
|
|
# Concatenate chunked outputs
|
|
out_chunked = torch.cat(out_chunks, dim=1)
|
|
|
|
# Compare
|
|
diff = (out_ref - out_chunked).abs()
|
|
max_diff = diff.max().item()
|
|
mean_diff = diff.mean().item()
|
|
|
|
# Tolerance: fp16/bf16 have limited precision
|
|
tol = 1e-2
|
|
passed = max_diff < tol
|
|
all_passed = all_passed and passed
|
|
|
|
status = "PASS" if passed else "FAIL"
|
|
print(
|
|
f"[{status}] seqlen={seqlen:5d} chunks={num_chunks} "
|
|
f"chunk_size={chunk_size:4d} heads={nheads:2d} dim={headdim:3d} "
|
|
f"max_diff={max_diff:.6f} mean_diff={mean_diff:.8f}"
|
|
)
|
|
|
|
print()
|
|
|
|
print("=" * 80)
|
|
assert all_passed, "Some tests failed!"
|
|
print("test_chunked_attention: PASSED")
|