Files
nano-vllm/nanovllm/layers/attention.py
2025-12-10 22:34:00 +08:00

310 lines
13 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
import logging
import torch
from torch import nn
import triton
import triton.language as tl
from flash_attn.flash_attn_interface import flash_attn_varlen_func, flash_attn_with_kvcache
from nanovllm.utils.context import get_context
logger = logging.getLogger(__name__)
@triton.jit
def store_kvcache_kernel(
key_ptr,
key_stride,
value_ptr,
value_stride,
k_cache_ptr,
v_cache_ptr,
slot_mapping_ptr,
D: tl.constexpr,
):
idx = tl.program_id(0)
slot = tl.load(slot_mapping_ptr + idx)
if slot == -1: return
key_offsets = idx * key_stride + tl.arange(0, D)
value_offsets = idx * value_stride + tl.arange(0, D)
key = tl.load(key_ptr + key_offsets)
value = tl.load(value_ptr + value_offsets)
cache_offsets = slot * D + tl.arange(0, D)
tl.store(k_cache_ptr + cache_offsets, key)
tl.store(v_cache_ptr + cache_offsets, value)
def store_kvcache(key: torch.Tensor, value: torch.Tensor, k_cache: torch.Tensor, v_cache: torch.Tensor, slot_mapping: torch.Tensor):
N, num_heads, head_dim = key.shape
D = num_heads * head_dim
assert key.stride(-1) == 1 and value.stride(-1) == 1
assert key.stride(1) == head_dim and value.stride(1) == head_dim
assert k_cache.stride(1) == D and v_cache.stride(1) == D
assert slot_mapping.numel() == N
store_kvcache_kernel[(N,)](key, key.stride(0), value, value.stride(0), k_cache, v_cache, slot_mapping, D)
class Attention(nn.Module):
def __init__(
self,
num_heads,
head_dim,
scale,
num_kv_heads,
):
super().__init__()
self.num_heads = num_heads
self.head_dim = head_dim
self.scale = scale
self.num_kv_heads = num_kv_heads
self.k_cache = self.v_cache = torch.tensor([])
# Layer ID set by model_runner after model creation
self.layer_id: int = -1
def forward(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor):
context = get_context()
k_cache, v_cache = self.k_cache, self.v_cache
if k_cache.numel() and v_cache.numel():
store_kvcache(k, v, k_cache, v_cache, context.slot_mapping)
if context.is_prefill:
if context.is_chunked_prefill:
# Chunked prefill: merge attention from previous KV
o = self._chunked_prefill_attention(q, k, v, context)
elif context.block_tables is not None: # prefix cache
k, v = k_cache, v_cache
o = flash_attn_varlen_func(q, k, v,
max_seqlen_q=context.max_seqlen_q, cu_seqlens_q=context.cu_seqlens_q,
max_seqlen_k=context.max_seqlen_k, cu_seqlens_k=context.cu_seqlens_k,
softmax_scale=self.scale, causal=True, block_table=context.block_tables)
else:
o = flash_attn_varlen_func(q, k, v,
max_seqlen_q=context.max_seqlen_q, cu_seqlens_q=context.cu_seqlens_q,
max_seqlen_k=context.max_seqlen_k, cu_seqlens_k=context.cu_seqlens_k,
softmax_scale=self.scale, causal=True, block_table=context.block_tables)
else: # decode
if context.is_chunked_prefill:
# Chunked decode: need to load all KV from CPU+GPU
o = self._chunked_decode_attention(q, k, v, context)
else:
o = flash_attn_with_kvcache(q.unsqueeze(1), k_cache, v_cache,
cache_seqlens=context.context_lens, block_table=context.block_tables,
softmax_scale=self.scale, causal=True)
return o
def _chunked_prefill_attention(
self,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
context,
) -> torch.Tensor:
"""
Compute attention with 三区域 GPU buffer for chunked prefill.
For chunked prefill:
1. Load previous KV from CPU using Compute/Prefetch区 (if any previous chunks)
2. Compute attention against previous KV chunks (no causal mask)
3. Compute attention against current chunk's KV (causal)
4. Merge all results using online softmax
三区域设计保证当前chunk的KV在Compute区previous KV从CPU加载到Prefetch区
不会发生写入和加载区域重叠的问题。
"""
from nanovllm.kvcache.chunked_attention import flash_attn_with_lse, merge_attention_outputs
# q, k, v shape: [total_tokens, num_heads, head_dim]
# Reshape for flash attention: [batch, seq, heads, dim]
q_batched = q.unsqueeze(0) # [1, total_tokens, heads, dim]
k_batched = k.unsqueeze(0)
v_batched = v.unsqueeze(0)
o_acc = None
lse_acc = None
# Load previous KV from CPU using Compute/Prefetch区
# Note: context.offload_engine is actually HybridKVCacheManager
kvcache_manager = context.offload_engine
seq = context.chunked_seq if hasattr(context, 'chunked_seq') else None
if kvcache_manager is not None and seq is not None and self.layer_id >= 0:
# Get prefilled CPU blocks (blocks already written in previous chunks)
cpu_block_table = kvcache_manager.get_prefilled_cpu_blocks(seq)
if cpu_block_table:
offload_engine = kvcache_manager.offload_engine
# 使用 Prefetch区 来加载 previous KV不会与当前 Compute区 冲突)
prefetch_size = offload_engine.num_prefetch_blocks
num_chunks = (len(cpu_block_table) + prefetch_size - 1) // prefetch_size
use_compute = True # 交替使用 Compute区 和 Prefetch区
# 首先将 previous KV 加载到 Prefetch区
# Only layer 0 triggers the load (loads ALL layers at once)
first_chunk_end = min(prefetch_size, len(cpu_block_table))
first_chunk_ids = cpu_block_table[:first_chunk_end]
if self.layer_id == 0:
offload_engine.load_to_prefetch(first_chunk_ids)
for chunk_idx in range(num_chunks):
start = chunk_idx * prefetch_size
end = min(start + prefetch_size, len(cpu_block_table))
num_blocks_in_chunk = end - start
# Prefetch next chunk to other buffer (if exists)
# Only layer 0 triggers the load
if chunk_idx + 1 < num_chunks and self.layer_id == 0:
next_start = end
next_end = min(next_start + prefetch_size, len(cpu_block_table))
next_chunk_ids = cpu_block_table[next_start:next_end]
if use_compute:
# 当前在 Prefetch区下一个加载到 Compute区如果有空间
# 注意Compute区 此时已写入当前chunk的KV不能覆盖
# 所以这里我们使用简单的同步策略:等待当前完成后再加载
pass # 简化版本:不进行双缓冲,只用 Prefetch区
else:
offload_engine.load_to_prefetch(next_chunk_ids)
# Wait for Prefetch区 and get KV
offload_engine.wait_prefetch()
prev_k, prev_v = offload_engine.get_kv_for_prefetch(
self.layer_id, num_blocks_in_chunk
)
# Compute attention against this chunk (no causal mask)
prev_o, prev_lse = flash_attn_with_lse(
q_batched,
prev_k,
prev_v,
softmax_scale=self.scale,
causal=False,
)
# Merge with accumulated
if o_acc is None:
o_acc, lse_acc = prev_o, prev_lse
else:
o_acc, lse_acc = merge_attention_outputs(o_acc, lse_acc, prev_o, prev_lse)
# Load next chunk to Prefetch区 (if exists)
if chunk_idx + 1 < num_chunks and self.layer_id == 0:
next_start = end
next_end = min(next_start + prefetch_size, len(cpu_block_table))
next_chunk_ids = cpu_block_table[next_start:next_end]
offload_engine.load_to_prefetch(next_chunk_ids)
# Compute attention against current chunk's KV (with causal mask)
current_o, current_lse = flash_attn_with_lse(
q_batched,
k_batched,
v_batched,
softmax_scale=self.scale,
causal=True,
)
# Merge with accumulated
if o_acc is None:
final_o = current_o
else:
final_o, _ = merge_attention_outputs(o_acc, lse_acc, current_o, current_lse)
# Remove batch dimension: [1, total_tokens, heads, dim] -> [total_tokens, heads, dim]
return final_o.squeeze(0)
def _chunked_decode_attention(
self,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
context,
) -> torch.Tensor:
"""
Compute decode attention with 三区域 GPU buffer.
All KV is stored on CPU. Uses Compute区 buffer on GPU:
1. Load chunk to Compute区
2. Compute attention
3. Repeat for all chunks
4. Finally, attend to Decode区 (slot 0) which contains the new token's KV
5. Merge all attention outputs using online softmax (LSE)
关键新token的KV在Decode区(slot 0)不会被Compute区的加载覆盖。
"""
from nanovllm.kvcache.chunked_attention import flash_attn_with_lse, merge_attention_outputs
# q shape: [batch_size, num_heads, head_dim] (single decode token per sequence)
# Need: [batch, seqlen, heads, dim]
q_batched = q.unsqueeze(1) # [batch, 1, heads, dim]
# Note: context.offload_engine is actually HybridKVCacheManager
kvcache_manager = context.offload_engine
seq = context.chunked_seq
# Get all CPU blocks for this sequence
cpu_block_table, _ = kvcache_manager.get_all_cpu_blocks(seq)
if self.layer_id == 0:
logger.debug(f"Decode attention: cpu_block_table={cpu_block_table}, seq.block_table={list(seq.block_table)}")
if not cpu_block_table:
raise RuntimeError("Chunked decode attention failed: no CPU blocks available")
# Get the actual offload_engine for 三区域 operations
offload_engine = kvcache_manager.offload_engine
# Calculate chunk info using Compute区
compute_size = offload_engine.num_compute_blocks
num_chunks = (len(cpu_block_table) + compute_size - 1) // compute_size
o_acc = None
lse_acc = None
for chunk_idx in range(num_chunks):
start = chunk_idx * compute_size
end = min(start + compute_size, len(cpu_block_table))
num_blocks_in_chunk = end - start
chunk_ids = cpu_block_table[start:end]
# Load this chunk to Compute区
# Only layer 0 triggers the load (loads ALL layers at once)
if self.layer_id == 0:
offload_engine.load_to_compute(chunk_ids)
# Wait for Compute区 to be ready and get KV
offload_engine.wait_compute()
k_chunk, v_chunk = offload_engine.get_kv_for_compute(
self.layer_id, num_blocks_in_chunk
)
# Compute attention for this chunk
o_chunk, lse_chunk = flash_attn_with_lse(
q_batched, k_chunk, v_chunk,
softmax_scale=self.scale,
causal=False,
)
# Merge with accumulated
if o_acc is None:
o_acc, lse_acc = o_chunk, lse_chunk
else:
o_acc, lse_acc = merge_attention_outputs(o_acc, lse_acc, o_chunk, lse_chunk)
# Now attend to Decode区 (contains the new token's KV)
# This is the token being decoded - only 1 token at position pos_in_block
pos_in_block = context.decode_pos_in_block
decode_k, decode_v = offload_engine.get_kv_for_decode_slot(self.layer_id, pos_in_block)
decode_o, decode_lse = flash_attn_with_lse(
q_batched, decode_k, decode_v,
softmax_scale=self.scale,
causal=False,
)
# Merge with accumulated
if o_acc is None:
o_acc = decode_o
else:
o_acc, _ = merge_attention_outputs(o_acc, lse_acc, decode_o, decode_lse)
if o_acc is None:
raise RuntimeError("Chunked decode attention failed: no KV available")
# Output shape: [batch, 1, heads, dim] (same as normal decode)
return o_acc