74 lines
2.1 KiB
Python
74 lines
2.1 KiB
Python
from functools import lru_cache
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
|
|
def apply_rotary_emb(
|
|
x: torch.Tensor,
|
|
cos: torch.Tensor,
|
|
sin: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
cos = cos.unsqueeze(-2)
|
|
sin = sin.unsqueeze(-2)
|
|
x1, x2 = torch.chunk(x.to(torch.float32), 2, dim=-1)
|
|
y1 = x1 * cos - x2 * sin
|
|
y2 = x2 * cos + x1 * sin
|
|
return torch.cat((y1, y2), dim=-1).to(x.dtype)
|
|
|
|
|
|
class RotaryEmbedding(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
head_size: int,
|
|
rotary_dim: int,
|
|
max_position_embeddings: int,
|
|
base: float,
|
|
) -> None:
|
|
super().__init__()
|
|
self.head_size = head_size
|
|
self.rotary_dim = rotary_dim
|
|
assert rotary_dim == head_size
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.base = base
|
|
inv_freq = 1.0 / (base**(torch.arange(0, self.rotary_dim, 2, dtype=torch.float) / self.rotary_dim))
|
|
t = torch.arange(self.max_position_embeddings, dtype=torch.float)
|
|
freqs = torch.einsum("i,j -> ij", t, inv_freq)
|
|
cos = freqs.cos()
|
|
sin = freqs.sin()
|
|
cache = torch.cat((cos, sin), dim=-1)
|
|
self.register_buffer("cos_sin_cache", cache, persistent=False)
|
|
|
|
@torch.compile
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
positions = positions.flatten()
|
|
num_tokens = positions.shape[0]
|
|
cos_sin = self.cos_sin_cache[positions]
|
|
cos, sin = cos_sin.chunk(2, dim=-1)
|
|
query_shape = query.shape
|
|
query = query.view(num_tokens, -1, self.head_size)
|
|
query = apply_rotary_emb(query, cos, sin).view(query_shape)
|
|
key_shape = key.shape
|
|
key = key.view(num_tokens, -1, self.head_size)
|
|
key = apply_rotary_emb(key, cos, sin).view(key_shape)
|
|
return query, key
|
|
|
|
|
|
@lru_cache(1)
|
|
def get_rope(
|
|
head_size: int,
|
|
rotary_dim: int,
|
|
max_position: int,
|
|
base: float,
|
|
rope_scaling: dict | None = None,
|
|
):
|
|
assert rope_scaling is None
|
|
rotary_emb = RotaryEmbedding(head_size, rotary_dim, max_position, base)
|
|
return rotary_emb
|