[refactor] Refactor the test_chunked_prefill/decode.

This commit is contained in:
Zijie Tian
2026-01-01 03:32:26 +08:00
parent 965c8aff12
commit 62b8a63314
2 changed files with 294 additions and 731 deletions

View File

@@ -1,374 +1,214 @@
"""
Hook-based correctness test for chunked decode attention.
Correctness test for chunked decode attention.
Uses PyTorch register_forward_hook() to capture real inference I/O,
then compares against reference computation to locate bugs.
This test targets the decode phase with CPU offload - after prefill,
the model generates tokens one by one while attending to all previous context.
Captures Q and output during inference, then computes reference using
CPU KV cache with standard flash attention.
"""
import os
os.environ["NANOVLLM_LOG_LEVEL"] = "INFO"
os.environ["NANOVLLM_LOG_LEVEL"] = "WARNING"
import torch
from random import randint, seed
from typing import Dict, List
from nanovllm import LLM, SamplingParams
from nanovllm.utils.context import get_context
from nanovllm.kvcache.chunked_attention import flash_attn_with_lse, merge_attention_outputs
from flash_attn.flash_attn_interface import flash_attn_func
# ============================================================
# Configuration
# ============================================================
MODEL_PATH = os.path.expanduser("~/models/Qwen3-0.6B/")
MAX_MODEL_LEN = 8 * 1024
# Config
MODEL_PATH = os.path.expanduser("~/models/Qwen3-4B-Instruct-2507/")
MAX_MODEL_LEN = 128 * 1024
NUM_GPU_BLOCKS = 2
INPUT_LEN = 2 * 1024 # 2K tokens for prefill
NUM_DECODE_TOKENS = 5 # Generate 5 tokens to test decode
INPUT_LEN = 16 * 1024
NUM_DECODE_TOKENS = 5
BLOCK_SIZE = 1024
# ============================================================
# Global capture storage
# ============================================================
captures = []
prefill_kv = {} # Store prefill k,v for reference computation
# State
prefill_captures: List[Dict] = []
decode_captures: List[Dict] = []
# ============================================================
# Hook Functions
# ============================================================
def make_hook(layer_id):
"""Create a forward hook for a specific layer."""
def hook(module, inputs, output):
q, k, v = inputs
ctx = get_context()
is_prefill = ctx.is_prefill
capture_entry = {
'layer_id': layer_id,
'is_prefill': is_prefill,
'q': q.clone().cpu(),
'k': k.clone().cpu(),
'v': v.clone().cpu(),
'output': output.clone().cpu(),
'is_chunked_prefill': ctx.is_chunked_prefill,
}
if is_prefill:
# Store prefill k,v for reference computation
chunk_idx = ctx.current_chunk_idx if hasattr(ctx, 'current_chunk_idx') else 0
capture_entry['chunk_idx'] = chunk_idx
if layer_id not in prefill_kv:
prefill_kv[layer_id] = []
prefill_kv[layer_id].append({
'chunk_idx': chunk_idx,
'k': k.clone().cpu(),
'v': v.clone().cpu(),
})
else:
# Decode phase - capture decode token info
capture_entry['decode_step'] = len([c for c in captures
if c['layer_id'] == layer_id and not c['is_prefill']])
captures.append(capture_entry)
def make_ones_injection_hook():
"""Inject Q=K=V=1.0 for deterministic testing."""
def hook(module, inputs):
q, k, v = inputs[0], inputs[1], inputs[2]
q_ones = torch.ones_like(q)
k_ones = torch.ones_like(k)
v_ones = torch.ones_like(v)
return (q_ones, k_ones, v_ones) + inputs[3:]
return hook
def register_hooks(llm):
"""Register forward hooks on all Attention modules."""
hooks = []
model = llm.model_runner.model
def make_capture_hook(layer_id: int):
"""Capture Q, K, V, output during inference."""
def hook(module, inputs, output):
ctx = get_context()
q, k, v = inputs
for layer_idx, decoder_layer in enumerate(model.model.layers):
attn_module = decoder_layer.self_attn.attn
hook = attn_module.register_forward_hook(make_hook(layer_idx))
hooks.append(hook)
return hooks
# ============================================================
# Reference Computation
# ============================================================
def compute_decode_reference(layer_id, decode_step, scale, debug=False):
"""
Compute reference decode attention output for a specific layer.
For decode, the query is a single token that attends to:
1. All prefill KV (from CPU cache)
2. All previous decode tokens (stored in GPU decode slot)
"""
# Get the decode capture
decode_captures = [c for c in captures
if c['layer_id'] == layer_id and not c['is_prefill']]
if decode_step >= len(decode_captures):
return None
decode_capture = decode_captures[decode_step]
q = decode_capture['q'].cuda() # [1, num_heads, head_dim]
q_batched = q.unsqueeze(1) # [1, 1, num_heads, head_dim]
if debug:
print(f" Reference for L{layer_id} D{decode_step}:")
print(f" q shape: {q_batched.shape}, mean={q_batched.mean().item():.4f}")
o_acc, lse_acc = None, None
# Attend to all prefill chunks
if layer_id in prefill_kv:
for chunk_data in sorted(prefill_kv[layer_id], key=lambda x: x['chunk_idx']):
k = chunk_data['k'].cuda().unsqueeze(0) # [1, seqlen, kv_heads, head_dim]
v = chunk_data['v'].cuda().unsqueeze(0)
o, lse = flash_attn_with_lse(q_batched, k, v, softmax_scale=scale, causal=False)
if debug:
print(f" Prefill chunk {chunk_data['chunk_idx']}: o.mean={o.mean().item():.6f}")
if o_acc is None:
o_acc, lse_acc = o, lse
else:
o_acc, lse_acc = merge_attention_outputs(o_acc, lse_acc, o, lse)
# Attend to previous decode tokens (including current)
# In decode, the current token's k,v are stored, and we need to attend to all previous decode tokens
# For step 0, we just have the current token's k,v
# For step 1, we have tokens 0 and 1's k,v
# etc.
# Collect k,v from all decode steps up to and including current
decode_kv = []
for i in range(decode_step + 1):
if i < len(decode_captures):
decode_kv.append({
'k': decode_captures[i]['k'].cuda(),
'v': decode_captures[i]['v'].cuda(),
if ctx.is_prefill:
chunk_idx = ctx.current_chunk_idx if hasattr(ctx, 'current_chunk_idx') else 0
prefill_captures.append({
'layer_id': layer_id,
'chunk_idx': chunk_idx,
'q': q.clone().cpu(),
'k': k.clone().cpu(),
'v': v.clone().cpu(),
'output': output.clone().cpu(),
})
if decode_kv:
# Stack decode k,v into a single tensor
decode_k = torch.cat([d['k'] for d in decode_kv], dim=0).unsqueeze(0) # [1, num_decode, kv_heads, head_dim]
decode_v = torch.cat([d['v'] for d in decode_kv], dim=0).unsqueeze(0)
if debug:
print(f" Decode tokens: {len(decode_kv)}, k.shape={decode_k.shape}")
# For decode, we use causal=False since we're attending to all decode tokens
# (the causal masking was already handled by only including tokens up to current)
o_decode, lse_decode = flash_attn_with_lse(q_batched, decode_k, decode_v,
softmax_scale=scale, causal=False)
if debug:
print(f" Decode attention: o.mean={o_decode.mean().item():.6f}")
if o_acc is None:
o_acc, lse_acc = o_decode, lse_decode
else:
o_acc, lse_acc = merge_attention_outputs(o_acc, lse_acc, o_decode, lse_decode)
decode_step = len([c for c in decode_captures if c['layer_id'] == layer_id])
decode_captures.append({
'layer_id': layer_id,
'decode_step': decode_step,
'q': q.clone().cpu(),
'k': k.clone().cpu(),
'v': v.clone().cpu(),
'output': output.clone().cpu(),
})
return hook
if o_acc is None:
def compute_decode_reference(layer_id: int, decode_step: int, scale: float,
k_cache_cpu: torch.Tensor, v_cache_cpu: torch.Tensor,
block_size: int, num_prefill_chunks: int) -> torch.Tensor:
"""
Compute reference decode output using CPU KV cache and standard flash attention.
For decode, query attends to:
1. All prefill KV (from CPU cache)
2. All previous decode tokens (from captured decode k, v)
"""
# Get decode capture for this layer and step
decode_cap = None
for c in decode_captures:
if c['layer_id'] == layer_id and c['decode_step'] == decode_step:
decode_cap = c
break
if decode_cap is None:
return None
if debug:
print(f" Final: o.mean={o_acc.mean().item():.6f}")
# Query: single decode token
q = decode_cap['q'].cuda() # [1, num_heads, head_dim]
q_batched = q.unsqueeze(0) # [1, 1, num_heads, head_dim]
return o_acc.squeeze(0).squeeze(0).cpu() # [num_heads, head_dim]
# Collect all K, V: prefill chunks from CPU cache + decode tokens from captures
all_k = []
all_v = []
# 1. Prefill chunks from CPU cache
for cidx in range(num_prefill_chunks):
# Get prefill capture to know the sequence length for this chunk
prefill_cap = None
for c in prefill_captures:
if c['layer_id'] == layer_id and c['chunk_idx'] == cidx:
prefill_cap = c
break
# ============================================================
# Test Runner
# ============================================================
if prefill_cap is not None:
seq_len = prefill_cap['q'].shape[0]
k = k_cache_cpu[layer_id, cidx, :seq_len].cuda()
v = v_cache_cpu[layer_id, cidx, :seq_len].cuda()
all_k.append(k)
all_v.append(v)
def run_test(verbose=True):
"""Run the hook-based chunked decode correctness test."""
global captures, prefill_kv
captures = []
prefill_kv = {}
# 2. Decode tokens from captures (up to and including current step)
for step in range(decode_step + 1):
for c in decode_captures:
if c['layer_id'] == layer_id and c['decode_step'] == step:
all_k.append(c['k'].cuda())
all_v.append(c['v'].cuda())
break
if verbose:
print("=" * 70)
print("Test: Hook-Based Chunked Decode Correctness")
print("=" * 70)
print(f"Model: {MODEL_PATH}")
print(f"Input length: {INPUT_LEN} tokens")
print(f"Decode tokens: {NUM_DECODE_TOKENS}")
print(f"Block size: {BLOCK_SIZE}")
print()
if not all_k:
return None
# Initialize LLM with CPU offload
llm = LLM(
MODEL_PATH,
enforce_eager=True,
max_model_len=MAX_MODEL_LEN,
max_num_batched_tokens=MAX_MODEL_LEN,
enable_cpu_offload=True,
kvcache_block_size=BLOCK_SIZE,
num_gpu_blocks=NUM_GPU_BLOCKS,
# Concatenate all K, V
full_k = torch.cat(all_k, dim=0).unsqueeze(0) # [1, total_len, kv_heads, head_dim]
full_v = torch.cat(all_v, dim=0).unsqueeze(0)
# Run flash attention (non-causal since we explicitly control what KV to include)
output = flash_attn_func(
q_batched, full_k, full_v,
softmax_scale=scale,
causal=False,
)
# Get model info
num_layers = len(llm.model_runner.model.model.layers)
head_dim = llm.model_runner.model.model.layers[0].self_attn.attn.head_dim
scale = head_dim ** -0.5
if verbose:
print(f"Num layers: {num_layers}")
print(f"Head dim: {head_dim}")
print()
# Register hooks
hooks = register_hooks(llm)
if verbose:
print(f"Registered {len(hooks)} hooks")
# Generate random prompt
seed(42)
prompt_token_ids = [[randint(0, 10000) for _ in range(INPUT_LEN)]]
# Run prefill and decode
if verbose:
print(f"Running inference with {NUM_DECODE_TOKENS} decode tokens...")
sampling_params = SamplingParams(temperature=0.6, max_tokens=NUM_DECODE_TOKENS)
outputs = llm.generate(prompt_token_ids, sampling_params, use_tqdm=False)
# Remove hooks
for hook in hooks:
hook.remove()
# =========== VERIFICATION: Check CPU cache after prefill ===========
# Verify that CPU cache data matches captured prefill k,v
if verbose:
print("\n--- CPU Cache Verification (After Prefill) ---")
offload_engine = llm.model_runner.kvcache_manager.offload_engine
# For each prefill capture, check if CPU cache matches
for layer_id in [0]: # Only check layer 0 for brevity
if layer_id not in prefill_kv:
continue
for chunk_data in prefill_kv[layer_id]:
chunk_idx = chunk_data['chunk_idx']
captured_k = chunk_data['k'] # [block_size, kv_heads, head_dim]
# CPU block ID should be chunk_idx (based on allocation order)
cpu_block_id = chunk_idx
cpu_k = offload_engine.k_cache_cpu[layer_id, cpu_block_id].cpu()
diff = (captured_k - cpu_k).abs().max().item()
print(f"Layer {layer_id}, Chunk {chunk_idx}: captured_k vs cpu_k max_diff={diff:.6f}")
if diff > 1e-3:
print(f" WARNING: CPU cache doesn't match captured k!")
print(f" captured_k[0,0,:5] = {captured_k[0,0,:5].tolist()}")
print(f" cpu_k[0,0,:5] = {cpu_k[0,0,:5].tolist()}")
print()
# Analyze captures
prefill_count = sum(1 for c in captures if c['is_prefill'])
decode_count = sum(1 for c in captures if not c['is_prefill'])
if verbose:
print(f"\nCaptured {prefill_count} prefill calls, {decode_count} decode calls")
# Count decode steps per layer
decode_per_layer = {}
for c in captures:
if not c['is_prefill']:
layer_id = c['layer_id']
if layer_id not in decode_per_layer:
decode_per_layer[layer_id] = 0
decode_per_layer[layer_id] += 1
if verbose:
print(f"Decode calls per layer: {decode_per_layer}")
print()
# Verify decode correctness
all_passed = True
results = []
first_fail_debug = True
for c in captures:
if c['is_prefill']:
continue # Skip prefill (already tested in test_chunked_prefill_hook.py)
layer_id = c['layer_id']
decode_step = c['decode_step']
# Only test first decode step for now (simpler reference computation)
if decode_step > 0:
continue
# Compute reference (debug first failure)
debug_this = (layer_id == 0 and first_fail_debug)
ref_output = compute_decode_reference(layer_id, decode_step, scale, debug=debug_this)
if ref_output is None:
continue
# Compare
actual_output = c['output'].squeeze(0) # Remove seq dim for decode
if actual_output.dim() == 3:
actual_output = actual_output.squeeze(0) # Handle [1, heads, dim] case
diff = (actual_output - ref_output).abs()
max_diff = diff.max().item()
mean_diff = diff.mean().item()
tol = 1e-2
passed = max_diff < tol
all_passed = all_passed and passed
status = "PASS" if passed else "FAIL"
results.append((layer_id, decode_step, passed, max_diff, mean_diff))
if verbose:
print(f"[{status}] Layer {layer_id:2d}, Decode {decode_step}: "
f"max_diff={max_diff:.6f} mean_diff={mean_diff:.8f}")
# Debug first failure
if not passed and first_fail_debug:
first_fail_debug = False
print(f" Debug: actual_output shape={actual_output.shape}, mean={actual_output.mean().item():.4f}")
print(f" Debug: ref_output shape={ref_output.shape}, mean={ref_output.mean().item():.4f}")
# Find where max diff is
max_idx = diff.argmax()
flat_actual = actual_output.flatten()
flat_ref = ref_output.flatten()
print(f" Debug: max_diff at idx={max_idx.item()}, actual={flat_actual[max_idx].item():.4f}, ref={flat_ref[max_idx].item():.4f}")
print()
print("=" * 70)
# Summary
total_tests = len(results)
passed_count = sum(1 for r in results if r[2])
print(f"Results: {passed_count}/{total_tests} tests passed")
if not all_passed:
print("\nFailed tests:")
for layer_id, decode_step, passed, max_diff, mean_diff in results:
if not passed:
print(f" - Layer {layer_id}, Decode {decode_step}: max_diff={max_diff:.6f}")
print()
return all_passed
return output.squeeze(0).squeeze(0).cpu() # [num_heads, head_dim]
# ============================================================
# Main
# ============================================================
if __name__ == "__main__":
passed = run_test(verbose=True)
llm = LLM(
MODEL_PATH,
enforce_eager=True,
max_model_len=MAX_MODEL_LEN,
max_num_batched_tokens=MAX_MODEL_LEN,
enable_cpu_offload=True,
kvcache_block_size=BLOCK_SIZE,
num_gpu_blocks=NUM_GPU_BLOCKS,
dtype="float16",
)
if passed:
print("test_chunked_decode_hook: PASSED")
else:
print("test_chunked_decode_hook: FAILED")
exit(1)
# Get model info
num_layers = len(llm.model_runner.model.model.layers)
head_dim = llm.model_runner.model.model.layers[0].self_attn.attn.head_dim
scale = head_dim ** -0.5
# Register hooks
hooks = []
for layer_idx, decoder_layer in enumerate(llm.model_runner.model.model.layers):
# Pre-hook: inject all ones for Q, K, V
# pre_hook = decoder_layer.self_attn.attn.register_forward_pre_hook(make_ones_injection_hook())
# hooks.append(pre_hook)
# Post-hook: capture Q, K, V, output
post_hook = decoder_layer.self_attn.attn.register_forward_hook(make_capture_hook(layer_idx))
hooks.append(post_hook)
# Run inference
seed(42)
prompt_token_ids = [[randint(0, 10000) for _ in range(INPUT_LEN)]]
outputs = llm.generate(prompt_token_ids, SamplingParams(temperature=0.6, max_tokens=NUM_DECODE_TOKENS), use_tqdm=False)
# Remove hooks
for hook in hooks:
hook.remove()
# Get CPU cache reference
offload_engine = llm.model_runner.kvcache_manager.offload_engine
k_cache_cpu = offload_engine.k_cache_cpu.clone()
v_cache_cpu = offload_engine.v_cache_cpu.clone()
# Calculate number of prefill chunks
num_prefill_chunks = INPUT_LEN // BLOCK_SIZE
# Verify decode outputs
all_passed = True
for c in decode_captures:
layer_id = c['layer_id']
decode_step = c['decode_step']
ref_output = compute_decode_reference(
layer_id, decode_step, scale,
k_cache_cpu, v_cache_cpu, BLOCK_SIZE, num_prefill_chunks
)
if ref_output is None:
continue
actual_output = c['output'].squeeze(0)
if actual_output.dim() == 3:
actual_output = actual_output.squeeze(0)
diff = (actual_output - ref_output).abs()
max_diff = diff.max().item()
passed = max_diff < 1e-1
all_passed = all_passed and passed
# if not passed:
print(f"[FAIL] Layer {layer_id}, Decode {decode_step}: max_diff={max_diff:.6f}")
print(f"test_chunked_decode_hook: {'PASSED' if all_passed else 'FAILED'}")

View File

@@ -1,203 +1,111 @@
"""
Hook-based correctness test for chunked prefill attention.
Correctness test for chunked prefill attention.
Uses PyTorch register_forward_hook() to capture real inference I/O,
then compares against reference computation to locate bugs.
This test targets the integration layer (context setup, cpu_block_table management)
which is where the needle test fails despite isolated attention tests passing.
Captures Q and output during inference, then computes reference using
CPU KV cache with standard flash attention.
"""
import os
os.environ["NANOVLLM_LOG_LEVEL"] = "DEBUG"
os.environ["NANOVLLM_LOG_LEVEL"] = "WARNING"
import torch
from random import randint, seed
from typing import Dict, List
from nanovllm import LLM, SamplingParams
from nanovllm.utils.context import get_context
from nanovllm.kvcache.chunked_attention import flash_attn_with_lse, merge_attention_outputs
from flash_attn.flash_attn_interface import flash_attn_varlen_func
# ============================================================
# Configuration
# ============================================================
# Config
MODEL_PATH = os.path.expanduser("~/models/Qwen3-4B-Instruct-2507/")
MAX_MODEL_LEN = 32 * 1024
MAX_MODEL_LEN = 128 * 1024
NUM_GPU_BLOCKS = 2
INPUT_LEN = 16 * 1024 # 4K tokens = 4 chunks with 1K block size
INPUT_LEN = 16 * 1024
BLOCK_SIZE = 1024
# ============================================================
# Global capture storage
# ============================================================
captures = []
# State - capture Q and output for each (layer, chunk)
captures: List[Dict] = []
# ============================================================
# Hook Functions
# ============================================================
def make_hook(layer_id):
"""Create a forward hook for a specific layer."""
def hook(module, inputs, output):
q, k, v = inputs
def make_ones_injection_hook():
"""Inject Q=K=V=1.0 for deterministic testing."""
def hook(module, inputs):
ctx = get_context()
if not ctx.is_prefill:
return inputs
# Only capture prefill phase
q, k, v = inputs[0], inputs[1], inputs[2]
q_ones = torch.ones_like(q)
k_ones = torch.ones_like(k)
v_ones = torch.ones_like(v)
return (q_ones, k_ones, v_ones) + inputs[3:]
return hook
def make_capture_hook(layer_id: int):
"""Capture Q and output during prefill."""
def hook(module, inputs, output):
ctx = get_context()
if not ctx.is_prefill:
return
q, k, v = inputs
chunk_idx = ctx.current_chunk_idx if hasattr(ctx, 'current_chunk_idx') else 0
capture_entry = {
captures.append({
'layer_id': layer_id,
'chunk_idx': chunk_idx,
'q': q.clone().cpu(),
'k': k.clone().cpu(),
'v': v.clone().cpu(),
'output': output.clone().cpu(),
'is_chunked_prefill': ctx.is_chunked_prefill,
}
# For debugging: also capture CPU cache state for layer 0
if layer_id == 0 and chunk_idx >= 2:
kvcache_manager = ctx.kvcache_manager if hasattr(ctx, 'kvcache_manager') else None
if kvcache_manager is not None and hasattr(kvcache_manager, 'offload_engine'):
oe = kvcache_manager.offload_engine
# Get what should have been loaded from CPU
cpu_k0 = oe.k_cache_cpu[0, 0].clone().cpu() # Layer 0, CPU block 0
cpu_k1 = oe.k_cache_cpu[0, 1].clone().cpu() # Layer 0, CPU block 1
capture_entry['cpu_k0'] = cpu_k0
capture_entry['cpu_k1'] = cpu_k1
captures.append(capture_entry)
})
return hook
def register_hooks(llm):
"""Register forward hooks on all Attention modules."""
hooks = []
model = llm.model_runner.model
for layer_idx, decoder_layer in enumerate(model.model.layers):
attn_module = decoder_layer.self_attn.attn
hook = attn_module.register_forward_hook(make_hook(layer_idx))
hooks.append(hook)
return hooks
# ============================================================
# Reference Computation
# ============================================================
def compute_reference(layer_id, chunk_idx, scale, debug=False):
def compute_reference(layer_id: int, chunk_idx: int, scale: float,
k_cache_cpu: torch.Tensor, v_cache_cpu: torch.Tensor,
block_size: int) -> torch.Tensor:
"""
Compute reference attention output for a specific layer and chunk.
Compute reference output using CPU KV cache and standard flash attention.
Uses the captured k, v from all chunks up to and including chunk_idx.
Concatenates all Q, K, V from chunks 0..chunk_idx and runs causal attention,
then extracts output for the current chunk.
"""
# Filter captures for this layer
# Get all captures for this layer up to chunk_idx
layer_captures = [c for c in captures
if c['layer_id'] == layer_id and c['chunk_idx'] <= chunk_idx]
if not layer_captures:
return None
# Get current chunk's q
current_capture = [c for c in layer_captures if c['chunk_idx'] == chunk_idx][0]
q = current_capture['q'].cuda().unsqueeze(0) # [1, seqlen, nheads, headdim]
# Collect all k, v up to current chunk
kv_list = []
for c in sorted(layer_captures, key=lambda x: x['chunk_idx']):
k = c['k'].cuda().unsqueeze(0) # [1, seqlen, nheads, headdim]
v = c['v'].cuda().unsqueeze(0)
kv_list.append((k, v, c['chunk_idx']))
if debug:
print(f" Reference for L{layer_id} C{chunk_idx}:")
print(f" q shape: {q.shape}, mean={q.mean().item():.4f}")
print(f" kv_list: {len(kv_list)} chunks")
for i, (k, v, cidx) in enumerate(kv_list):
print(f" chunk {cidx}: k.mean={k.mean().item():.4f}, v.mean={v.mean().item():.4f}")
o_acc, lse_acc = None, None
# Previous chunks: non-causal attention
for i in range(len(kv_list) - 1):
k, v, _ = kv_list[i]
o, lse = flash_attn_with_lse(q, k, v, softmax_scale=scale, causal=False)
if o_acc is None:
o_acc, lse_acc = o, lse
else:
o_acc, lse_acc = merge_attention_outputs(o_acc, lse_acc, o, lse)
# Current chunk: causal attention
k_cur, v_cur, _ = kv_list[-1]
o_cur, lse_cur = flash_attn_with_lse(q, k_cur, v_cur, softmax_scale=scale, causal=True)
if o_acc is None:
return o_cur.squeeze(0).cpu()
final_o, _ = merge_attention_outputs(o_acc, lse_acc, o_cur, lse_cur)
return final_o.squeeze(0).cpu()
def compute_standard_reference(layer_id, chunk_idx, scale, debug=False):
"""
Compute reference using standard flash attention (single pass with all K, V).
This simulates what standard (non-chunked) prefill would produce.
Concatenates all Q, K, V from chunks 0 to chunk_idx and runs a single
causal attention pass, then extracts the output for the current chunk.
"""
# Filter captures for this layer
layer_captures = [c for c in captures
if c['layer_id'] == layer_id and c['chunk_idx'] <= chunk_idx]
if not layer_captures:
return None
# Sort by chunk index
layer_captures = sorted(layer_captures, key=lambda x: x['chunk_idx'])
# Concatenate all Q, K, V
if not layer_captures:
return None
# Collect Q from captures, K/V from CPU cache
all_q = []
all_k = []
all_v = []
chunk_lengths = []
for c in layer_captures:
cidx = c['chunk_idx']
q = c['q'].cuda() # [seqlen, nheads, headdim]
k = c['k'].cuda()
v = c['v'].cuda()
all_q.append(q)
all_k.append(k)
all_v.append(v)
chunk_lengths.append(q.shape[0])
# Concatenate along sequence dimension
full_q = torch.cat(all_q, dim=0) # [total_seqlen, nheads, headdim]
# Get K, V from CPU cache (already offloaded during prefill)
# CPU cache shape: [num_layers, num_blocks, block_size, kv_heads, head_dim]
k = k_cache_cpu[layer_id, cidx, :q.shape[0]].cuda()
v = v_cache_cpu[layer_id, cidx, :q.shape[0]].cuda()
all_k.append(k)
all_v.append(v)
# Concatenate
full_q = torch.cat(all_q, dim=0)
full_k = torch.cat(all_k, dim=0)
full_v = torch.cat(all_v, dim=0)
total_len = full_q.shape[0]
if debug:
print(f" Standard Reference for L{layer_id} C{chunk_idx}:")
print(f" full_q shape: {full_q.shape}, mean={full_q.mean().item():.4f}")
print(f" full_k shape: {full_k.shape}, mean={full_k.mean().item():.4f}")
print(f" chunk_lengths: {chunk_lengths}")
# Run standard causal flash attention
# flash_attn_varlen_func expects: q, k, v with shape [total_seqlen, nheads, headdim]
cu_seqlens = torch.tensor([0, total_len], dtype=torch.int32, device='cuda')
full_o = flash_attn_varlen_func(
full_q, full_k, full_v,
cu_seqlens_q=cu_seqlens,
@@ -208,266 +116,81 @@ def compute_standard_reference(layer_id, chunk_idx, scale, debug=False):
causal=True,
)
# Extract output for current chunk only
# Extract output for current chunk
start_pos = sum(chunk_lengths[:-1])
end_pos = sum(chunk_lengths)
chunk_output = full_o[start_pos:end_pos]
if debug:
print(f" full_o shape: {full_o.shape}")
print(f" extracting positions [{start_pos}:{end_pos}]")
print(f" chunk_output shape: {chunk_output.shape}, mean={chunk_output.mean().item():.4f}")
return chunk_output.cpu()
# ============================================================
# Test Runner
# ============================================================
def run_test(verbose=True):
"""Run the hook-based chunked prefill correctness test."""
global captures
captures = []
if verbose:
print("=" * 70)
print("Test: Hook-Based Chunked Prefill Correctness")
print("=" * 70)
print(f"Model: {MODEL_PATH}")
print(f"Input length: {INPUT_LEN} tokens")
print(f"Block size: {BLOCK_SIZE}")
print(f"Expected chunks: {INPUT_LEN // BLOCK_SIZE}")
print()
# Initialize LLM with CPU offload
llm = LLM(
MODEL_PATH,
enforce_eager=True,
max_model_len=MAX_MODEL_LEN,
max_num_batched_tokens=MAX_MODEL_LEN,
enable_cpu_offload=True,
kvcache_block_size=BLOCK_SIZE,
num_gpu_blocks=NUM_GPU_BLOCKS,
)
# Get model info
num_layers = len(llm.model_runner.model.model.layers)
head_dim = llm.model_runner.model.model.layers[0].self_attn.attn.head_dim
scale = head_dim ** -0.5
if verbose:
print(f"Num layers: {num_layers}")
print(f"Head dim: {head_dim}")
print()
# Register hooks
hooks = register_hooks(llm)
if verbose:
print(f"Registered {len(hooks)} hooks")
# Generate random prompt
seed(42)
prompt_token_ids = [[randint(0, 10000) for _ in range(INPUT_LEN)]]
# Run prefill only (max_tokens=1)
if verbose:
print("Running inference...")
sampling_params = SamplingParams(temperature=0.6, max_tokens=1)
outputs = llm.generate(prompt_token_ids, sampling_params, use_tqdm=False)
# Remove hooks
for hook in hooks:
hook.remove()
# Analyze captures
if verbose:
print(f"\nCaptured {len(captures)} attention calls")
# Group by layer and chunk
chunks_per_layer = {}
for c in captures:
layer_id = c['layer_id']
chunk_idx = c['chunk_idx']
if layer_id not in chunks_per_layer:
chunks_per_layer[layer_id] = set()
chunks_per_layer[layer_id].add(chunk_idx)
if verbose:
print("Chunks per layer:", {k: sorted(v) for k, v in chunks_per_layer.items()})
print()
# First, verify CPU cache data integrity
if verbose:
print("\n--- CPU Cache Verification (Layer 0) ---")
# Get original k from chunk 0 and chunk 1 captures
chunk0_k = None
chunk1_k = None
chunk2_capture = None
for c in captures:
if c['layer_id'] == 0:
if c['chunk_idx'] == 0:
chunk0_k = c['k']
elif c['chunk_idx'] == 1:
chunk1_k = c['k']
elif c['chunk_idx'] == 2:
chunk2_capture = c
if chunk0_k is not None and chunk2_capture is not None and 'cpu_k0' in chunk2_capture:
cpu_k0 = chunk2_capture['cpu_k0']
diff_k0 = (chunk0_k - cpu_k0).abs().max().item()
print(f"Chunk 0 k vs CPU cache block 0: max_diff={diff_k0:.6f}")
if diff_k0 > 1e-3:
print(f" WARNING: CPU cache block 0 differs from original chunk 0 k!")
print(f" Original k[0,0,:5] = {chunk0_k[0,0,:5].tolist()}")
print(f" CPU k0[0,0,:5] = {cpu_k0[0,0,:5].tolist()}")
if chunk1_k is not None and chunk2_capture is not None and 'cpu_k1' in chunk2_capture:
cpu_k1 = chunk2_capture['cpu_k1']
diff_k1 = (chunk1_k - cpu_k1).abs().max().item()
print(f"Chunk 1 k vs CPU cache block 1: max_diff={diff_k1:.6f}")
if diff_k1 > 1e-3:
print(f" WARNING: CPU cache block 1 differs from original chunk 1 k!")
print(f" Original k[0,0,:5] = {chunk1_k[0,0,:5].tolist()}")
print(f" CPU k1[0,0,:5] = {cpu_k1[0,0,:5].tolist()}")
print()
# ================================================================
# Test 1: Verify against merge-based reference (same algorithm)
# ================================================================
if verbose:
print("--- Test 1: Merge-based Reference (verifies merge algorithm) ---")
all_passed_merge = True
results_merge = []
first_fail_debug = True
for c in captures:
layer_id = c['layer_id']
chunk_idx = c['chunk_idx']
if chunk_idx == 0:
continue
debug_this = (chunk_idx >= 2 and layer_id == 0 and first_fail_debug)
ref_output = compute_reference(layer_id, chunk_idx, scale, debug=debug_this)
if ref_output is None:
continue
actual_output = c['output']
diff = (actual_output - ref_output).abs()
max_diff = diff.max().item()
mean_diff = diff.mean().item()
tol = 1e-2
passed = max_diff < tol
all_passed_merge = all_passed_merge and passed
status = "PASS" if passed else "FAIL"
results_merge.append((layer_id, chunk_idx, passed, max_diff, mean_diff))
if verbose:
print(f"[{status}] Layer {layer_id:2d}, Chunk {chunk_idx}: "
f"max_diff={max_diff:.6f} mean_diff={mean_diff:.8f}")
if not passed and first_fail_debug:
first_fail_debug = False
print(f" Debug: actual_output shape={actual_output.shape}, mean={actual_output.mean().item():.4f}")
print(f" Debug: ref_output shape={ref_output.shape}, mean={ref_output.mean().item():.4f}")
max_idx = diff.argmax()
flat_actual = actual_output.flatten()
flat_ref = ref_output.flatten()
print(f" Debug: max_diff at idx={max_idx.item()}, actual={flat_actual[max_idx].item():.4f}, ref={flat_ref[max_idx].item():.4f}")
print()
# ================================================================
# Test 2: Verify against standard flash attention (single pass)
# ================================================================
if verbose:
print("--- Test 2: Standard FlashAttn Reference (verifies correctness vs non-chunked) ---")
all_passed_standard = True
results_standard = []
first_fail_debug = True
for c in captures:
layer_id = c['layer_id']
chunk_idx = c['chunk_idx']
if chunk_idx == 0:
continue
debug_this = (chunk_idx >= 2 and layer_id == 0 and first_fail_debug)
std_ref_output = compute_standard_reference(layer_id, chunk_idx, scale, debug=debug_this)
if std_ref_output is None:
continue
actual_output = c['output']
diff = (actual_output - std_ref_output).abs()
max_diff = diff.max().item()
mean_diff = diff.mean().item()
tol = 1e-2
passed = max_diff < tol
all_passed_standard = all_passed_standard and passed
status = "PASS" if passed else "FAIL"
results_standard.append((layer_id, chunk_idx, passed, max_diff, mean_diff))
if verbose:
print(f"[{status}] Layer {layer_id:2d}, Chunk {chunk_idx}: "
f"max_diff={max_diff:.6f} mean_diff={mean_diff:.8f}")
if not passed and first_fail_debug:
first_fail_debug = False
print(f" Debug: actual_output shape={actual_output.shape}, mean={actual_output.mean().item():.4f}")
print(f" Debug: std_ref_output shape={std_ref_output.shape}, mean={std_ref_output.mean().item():.4f}")
max_idx = diff.argmax()
flat_actual = actual_output.flatten()
flat_ref = std_ref_output.flatten()
print(f" Debug: max_diff at idx={max_idx.item()}, actual={flat_actual[max_idx].item():.4f}, ref={flat_ref[max_idx].item():.4f}")
print()
print("=" * 70)
# Summary
total_merge = len(results_merge)
passed_merge = sum(1 for r in results_merge if r[2])
total_standard = len(results_standard)
passed_standard = sum(1 for r in results_standard if r[2])
print(f"Merge-based reference: {passed_merge}/{total_merge} tests passed")
print(f"Standard FlashAttn ref: {passed_standard}/{total_standard} tests passed")
all_passed = all_passed_merge and all_passed_standard
if not all_passed_merge:
print("\nFailed merge-based tests:")
for layer_id, chunk_idx, passed, max_diff, mean_diff in results_merge:
if not passed:
print(f" - Layer {layer_id}, Chunk {chunk_idx}: max_diff={max_diff:.6f}")
if not all_passed_standard:
print("\nFailed standard FlashAttn tests:")
for layer_id, chunk_idx, passed, max_diff, mean_diff in results_standard:
if not passed:
print(f" - Layer {layer_id}, Chunk {chunk_idx}: max_diff={max_diff:.6f}")
print()
return all_passed
return full_o[start_pos:end_pos].cpu()
# ============================================================
# Main
# ============================================================
if __name__ == "__main__":
passed = run_test(verbose=True)
llm = LLM(
MODEL_PATH,
enforce_eager=True,
max_model_len=MAX_MODEL_LEN,
max_num_batched_tokens=MAX_MODEL_LEN,
enable_cpu_offload=True,
kvcache_block_size=BLOCK_SIZE,
num_gpu_blocks=NUM_GPU_BLOCKS,
dtype="float16",
)
if passed:
print("test_chunked_prefill_hook: PASSED")
else:
print("test_chunked_prefill_hook: FAILED")
exit(1)
# Get model info
num_layers = len(llm.model_runner.model.model.layers)
head_dim = llm.model_runner.model.model.layers[0].self_attn.attn.head_dim
scale = head_dim ** -0.5
# Register hooks
hooks = []
for layer_idx, decoder_layer in enumerate(llm.model_runner.model.model.layers):
# Pre-hook: inject all ones for Q, K, V
# pre_hook = decoder_layer.self_attn.attn.register_forward_pre_hook(make_ones_injection_hook())
# hooks.append(pre_hook)
# Post-hook: capture Q, K, V, output
post_hook = decoder_layer.self_attn.attn.register_forward_hook(make_capture_hook(layer_idx))
hooks.append(post_hook)
# Run inference
seed(42)
prompt_token_ids = [[randint(0, 10000) for _ in range(INPUT_LEN)]]
outputs = llm.generate(prompt_token_ids, SamplingParams(temperature=0.6, max_tokens=1), use_tqdm=False)
# Remove hooks
for hook in hooks:
hook.remove()
# Get CPU cache reference
offload_engine = llm.model_runner.kvcache_manager.offload_engine
k_cache_cpu = offload_engine.k_cache_cpu.clone()
v_cache_cpu = offload_engine.v_cache_cpu.clone()
# Verify: compare actual output with reference computed from CPU cache
all_passed = True
num_chunks = INPUT_LEN // BLOCK_SIZE
for idx,c in enumerate(captures):
layer_id = c['layer_id']
chunk_idx = c['chunk_idx']
# Skip chunk 0 (no previous KV to load)
if chunk_idx == 0:
continue
ref_output = compute_reference(layer_id, chunk_idx, scale, k_cache_cpu, v_cache_cpu, BLOCK_SIZE)
if ref_output is None:
continue
actual_output = c['output']
diff = (actual_output - ref_output).abs()
max_diff = diff.max().item()
passed = max_diff < 1e-1 # float16 tolerance
all_passed = all_passed and passed
if not passed:
print(f"[FAIL] Layer {layer_id}, Chunk {chunk_idx}: max_diff={max_diff:.6f}")
__import__('pdb').set_trace()
print(f"test_chunked_prefill_hook: {'PASSED' if all_passed else 'FAILED'}")