[WIP] need to fix model to normally decode.

This commit is contained in:
Zijie Tian
2026-01-01 05:18:27 +08:00
parent 62b8a63314
commit 74ee6d0895
3 changed files with 317 additions and 123 deletions

View File

@@ -118,6 +118,24 @@ class OffloadEngine:
dtype=dtype, device="cuda" dtype=dtype, device="cuda"
) )
# ========== Per-layer decode buffer ==========
# During decode, all layers share decode_slot (no layer dimension in GPU cache).
# This causes accumulated tokens to be overwritten by each layer.
# Solution: Maintain separate per-layer buffers for decode tokens.
# Shape: [num_layers, block_size, kv_heads, head_dim]
# Memory: num_layers * block_size * kv_heads * head_dim * dtype_size
# e.g., 28 * 1024 * 8 * 128 * 2 = 58.7 MB (acceptable)
self.decode_k_buffer = torch.zeros(
num_layers, block_size, num_kv_heads, head_dim,
dtype=dtype, device="cuda"
)
self.decode_v_buffer = torch.zeros(
num_layers, block_size, num_kv_heads, head_dim,
dtype=dtype, device="cuda"
)
decode_buf_mb = 2 * num_layers * block_size * num_kv_heads * head_dim * dtype.itemsize / (1024 * 1024)
logger.info(f" Per-layer decode buffer: {decode_buf_mb:.1f} MB")
# ========== Fixed-address CPU KV cache (pinned memory) ========== # ========== Fixed-address CPU KV cache (pinned memory) ==========
self.k_cache_cpu = torch.zeros( self.k_cache_cpu = torch.zeros(
num_layers, num_cpu_blocks, block_size, num_kv_heads, head_dim, num_layers, num_cpu_blocks, block_size, num_kv_heads, head_dim,

View File

@@ -87,6 +87,15 @@ class Attention(nn.Module):
else: # decode else: # decode
if context.is_chunked_prefill: if context.is_chunked_prefill:
# Chunked decode: need to load all KV from CPU+GPU # Chunked decode: need to load all KV from CPU+GPU
# Store current decode token to per-layer decode buffer
# This is needed because GPU cache has no layer dimension,
# so all layers would overwrite each other in decode_slot.
kvcache_manager = context.kvcache_manager
offload_engine = kvcache_manager.offload_engine
pos_in_block = context.decode_pos_in_block
# k, v shape: [1, kv_heads, head_dim]
offload_engine.decode_k_buffer[self.layer_id, pos_in_block].copy_(k.squeeze(0))
offload_engine.decode_v_buffer[self.layer_id, pos_in_block].copy_(v.squeeze(0))
o = self._chunked_decode_attention(q, k, v, context) o = self._chunked_decode_attention(q, k, v, context)
else: else:
o = flash_attn_with_kvcache(q.unsqueeze(1), k_cache, v_cache, o = flash_attn_with_kvcache(q.unsqueeze(1), k_cache, v_cache,
@@ -390,25 +399,17 @@ class Attention(nn.Module):
context, context,
) -> torch.Tensor: ) -> torch.Tensor:
""" """
Compute decode attention with double-buffering using decode_load_slots. Compute decode attention using ring buffer pipeline (same as prefill).
Decode uses: Uses the same loading mechanism as _chunked_prefill_attention:
- decode_slot (slot[0]): writes new token's KV - Load one block at a time from CPU to GPU slot
- decode_load_slots (slots[1:]): load previous chunks from CPU - Compute attention for each block
- Merge results using online softmax
- Finally merge with decode buffer (accumulated decode tokens)
Pipeline design: This approach is simpler and proven correct (prefill tests pass).
- First half of decode_load_slots: 'compute' buffer The only difference from prefill is the additional decode buffer
- Second half: 'prefetch' buffer that stores new tokens generated during decode.
- Double-buffer between them for async overlap
Timeline:
┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│Load C0→buf0 │ │Load C1→buf1 │ │Load C2→buf0 │ ...
└─────────────┘ └─────────────┘ └─────────────┘
↘ ↘ ↘
┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│ Attn(C0) │ │ Attn(C1) │ │ Attn(C2) │
└─────────────┘ └─────────────┘ └─────────────┘
""" """
from nanovllm.kvcache.chunked_attention import flash_attn_with_lse, merge_attention_outputs from nanovllm.kvcache.chunked_attention import flash_attn_with_lse, merge_attention_outputs
@@ -419,7 +420,6 @@ class Attention(nn.Module):
seq = context.chunked_seq seq = context.chunked_seq
# Get only PREFILLED CPU blocks (exclude the current decode block) # Get only PREFILLED CPU blocks (exclude the current decode block)
# The decode block's KV is still in GPU decode_slot, not yet offloaded to CPU
cpu_block_table = kvcache_manager.get_prefilled_cpu_blocks(seq) cpu_block_table = kvcache_manager.get_prefilled_cpu_blocks(seq)
if self.layer_id == 0: if self.layer_id == 0:
logger.debug(f"Decode attention: cpu_block_table={cpu_block_table}, seq.block_table={list(seq.block_table)}") logger.debug(f"Decode attention: cpu_block_table={cpu_block_table}, seq.block_table={list(seq.block_table)}")
@@ -427,12 +427,12 @@ class Attention(nn.Module):
raise RuntimeError("Chunked decode attention failed: no prefilled CPU blocks available") raise RuntimeError("Chunked decode attention failed: no prefilled CPU blocks available")
# Calculate valid tokens in the last block # Calculate valid tokens in the last block
# prefill_len = total prefilled tokens (current decode token not yet in CPU) # Note: For chunked prefill, each block is exactly block_size tokens
# The cpu_block_table only contains full prefill blocks
block_size = kvcache_manager.block_size block_size = kvcache_manager.block_size
prefill_len = len(seq) - 1 # Exclude current decode token num_prefill_blocks = len(cpu_block_table)
last_block_valid_tokens = prefill_len % block_size # All prefill blocks are full (block_size tokens each)
if last_block_valid_tokens == 0 and prefill_len > 0: last_block_valid_tokens = block_size
last_block_valid_tokens = block_size # Last block is full
# Apply sparse policy if enabled # Apply sparse policy if enabled
if kvcache_manager.sparse_policy is not None: if kvcache_manager.sparse_policy is not None:
@@ -440,7 +440,7 @@ class Attention(nn.Module):
query_chunk_idx=0, query_chunk_idx=0,
num_query_chunks=1, num_query_chunks=1,
layer_id=self.layer_id, layer_id=self.layer_id,
query=q_batched, # Decode provides query for query-aware selection query=q_batched,
is_prefill=False, is_prefill=False,
block_size=kvcache_manager.block_size, block_size=kvcache_manager.block_size,
total_kv_len=len(cpu_block_table) * kvcache_manager.block_size, total_kv_len=len(cpu_block_table) * kvcache_manager.block_size,
@@ -450,104 +450,28 @@ class Attention(nn.Module):
) )
offload_engine = kvcache_manager.offload_engine offload_engine = kvcache_manager.offload_engine
compute_stream = offload_engine.compute_stream load_slots = offload_engine.decode_load_slots # Available slots for loading
# Chunk size = capacity of each double buffer region (compute/prefetch) # Use ring buffer pipeline (same as prefill) to load prefilled blocks
# Each region uses half of decode_load_slots o_acc, lse_acc = self._decode_ring_buffer_pipeline(
chunk_size = max(1, len(offload_engine.decode_load_slots) // 2) q_batched, cpu_block_table, load_slots, offload_engine,
num_chunks = (len(cpu_block_table) + chunk_size - 1) // chunk_size block_size, last_block_valid_tokens
# Check if double buffering is possible (need at least 2 separate regions)
# With only 1 load slot, compute and prefetch regions overlap -> can't double buffer
can_double_buffer = len(offload_engine.decode_load_slots) >= 2
o_acc = None
lse_acc = None
# Double buffering state: True = use Compute region, False = use Prefetch region
use_compute = True
# Pre-load first chunk to Compute region (async)
first_chunk_ids = cpu_block_table[:min(chunk_size, len(cpu_block_table))]
offload_engine.load_to_compute_layer(self.layer_id, first_chunk_ids)
for chunk_idx in range(num_chunks):
start = chunk_idx * chunk_size
end = min(start + chunk_size, len(cpu_block_table))
num_blocks_in_chunk = end - start
# Wait for current buffer to be ready on compute_stream
# The load runs on transfer_stream_main, compute runs on compute_stream
compute_stream.wait_stream(offload_engine.transfer_stream_main)
# All computation on explicit compute_stream
with torch.cuda.stream(compute_stream):
# Get KV from current buffer FIRST, before prefetching overwrites it
if use_compute:
k_chunk, v_chunk = offload_engine.get_kv_for_compute(num_blocks_in_chunk)
else:
k_chunk, v_chunk = offload_engine.get_kv_for_prefetch(num_blocks_in_chunk)
# Handle partial last block: slice to only include valid tokens
# This is critical because the rest of the block contains stale data
is_last_chunk = (end == len(cpu_block_table))
if is_last_chunk and last_block_valid_tokens < block_size:
# Calculate total valid tokens in this chunk
# All blocks except the last are full, last block has last_block_valid_tokens
full_blocks = num_blocks_in_chunk - 1
valid_tokens = full_blocks * block_size + last_block_valid_tokens
# Slice KV: [batch, seqlen, heads, dim] -> [batch, valid_tokens, heads, dim]
k_chunk = k_chunk[:, :valid_tokens, :, :]
v_chunk = v_chunk[:, :valid_tokens, :, :]
# Compute attention for this chunk
o_chunk, lse_chunk = flash_attn_with_lse(
q_batched, k_chunk, v_chunk,
softmax_scale=self.scale,
causal=False,
) )
# Merge with accumulated # Now attend to accumulated decode tokens from per-layer decode buffer
if o_acc is None:
o_acc, lse_acc = o_chunk, lse_chunk
else:
o_acc, lse_acc = merge_attention_outputs(o_acc, lse_acc, o_chunk, lse_chunk)
# Trigger async prefetch/load of next chunk to the OTHER buffer
# This happens AFTER attention completes, so the data is no longer needed
if chunk_idx + 1 < num_chunks:
next_start = end
next_end = min(next_start + chunk_size, len(cpu_block_table))
next_chunk_ids = cpu_block_table[next_start:next_end]
if can_double_buffer:
if use_compute:
# Current in Compute, prefetch next to Prefetch region
offload_engine.load_to_prefetch_layer(self.layer_id, next_chunk_ids)
else:
# Current in Prefetch, prefetch next to Compute region
offload_engine.load_to_compute_layer(self.layer_id, next_chunk_ids)
else:
# Sync fallback: load next chunk to same slot (always compute region)
offload_engine.load_to_compute_layer(self.layer_id, next_chunk_ids)
# Swap buffers for next iteration (only matters if can_double_buffer)
use_compute = not use_compute
# Now attend to Decode region (contains accumulated decode tokens)
pos_in_block = context.decode_pos_in_block pos_in_block = context.decode_pos_in_block
start_pos = context.decode_start_pos_in_block start_pos = context.decode_start_pos_in_block
num_accumulated = pos_in_block - start_pos + 1 num_accumulated = pos_in_block - start_pos + 1
# IMPORTANT: Sync compute_stream with default stream before reading decode_slot # Sync compute_stream with default stream before reading decode_buffer
# store_kvcache writes to decode_slot on default stream (before entering this function) compute_stream = offload_engine.compute_stream
# We need to ensure that write is complete before reading on compute_stream
compute_stream.wait_stream(torch.cuda.default_stream()) compute_stream.wait_stream(torch.cuda.default_stream())
with torch.cuda.stream(compute_stream): with torch.cuda.stream(compute_stream):
if num_accumulated > 0: if num_accumulated > 0:
# GPU cache has no layer dimension # Read from per-layer decode buffer
decode_k = offload_engine.k_cache_gpu[offload_engine.decode_slot, start_pos:pos_in_block+1] decode_k = offload_engine.decode_k_buffer[self.layer_id, start_pos:pos_in_block+1]
decode_v = offload_engine.v_cache_gpu[offload_engine.decode_slot, start_pos:pos_in_block+1] decode_v = offload_engine.decode_v_buffer[self.layer_id, start_pos:pos_in_block+1]
decode_k = decode_k.unsqueeze(0) decode_k = decode_k.unsqueeze(0)
decode_v = decode_v.unsqueeze(0) decode_v = decode_v.unsqueeze(0)
@@ -566,7 +490,82 @@ class Attention(nn.Module):
raise RuntimeError("Chunked decode attention failed: no KV available") raise RuntimeError("Chunked decode attention failed: no KV available")
# Sync back to default stream before returning # Sync back to default stream before returning
# Caller expects result to be ready on default stream
torch.cuda.default_stream().wait_stream(compute_stream) torch.cuda.default_stream().wait_stream(compute_stream)
return o_acc return o_acc
def _decode_ring_buffer_pipeline(
self,
q_batched: torch.Tensor,
cpu_block_table: list,
load_slots: list,
offload_engine,
block_size: int,
last_block_valid_tokens: int,
):
"""
Ring buffer pipeline for decode prefill loading (same mechanism as prefill).
Loads one block at a time, computes attention, and merges results.
Uses the same load_to_slot_layer / wait_slot_layer / get_kv_for_slot
methods as prefill for proven correctness.
"""
from nanovllm.kvcache.chunked_attention import flash_attn_with_lse, merge_attention_outputs
num_blocks = len(cpu_block_table)
if num_blocks == 0:
return None, None
if not load_slots:
return None, None
o_acc, lse_acc = None, None
num_slots = len(load_slots)
compute_stream = offload_engine.compute_stream
# Phase 1: Pre-load up to num_slots blocks
num_preload = min(num_slots, num_blocks)
for i in range(num_preload):
offload_engine.load_to_slot_layer(load_slots[i], self.layer_id, cpu_block_table[i])
# Phase 2: Process blocks with pipeline
for block_idx in range(num_blocks):
current_slot = load_slots[block_idx % num_slots]
cpu_block_id = cpu_block_table[block_idx]
# Wait for current slot's transfer to complete
offload_engine.wait_slot_layer(current_slot)
with torch.cuda.stream(compute_stream):
# Get KV from slot
prev_k, prev_v = offload_engine.get_kv_for_slot(current_slot)
# Handle partial last block
is_last_block = (block_idx == num_blocks - 1)
if is_last_block and last_block_valid_tokens < block_size:
prev_k = prev_k[:, :last_block_valid_tokens, :, :]
prev_v = prev_v[:, :last_block_valid_tokens, :, :]
# Compute attention
prev_o, prev_lse = flash_attn_with_lse(
q_batched, prev_k, prev_v,
softmax_scale=self.scale,
causal=False,
)
# Record compute done for slot reuse
offload_engine.record_slot_compute_done(current_slot)
# Start loading next block (pipeline)
next_block_idx = block_idx + num_slots
if next_block_idx < num_blocks:
offload_engine.load_to_slot_layer(current_slot, self.layer_id, cpu_block_table[next_block_idx])
# Merge with accumulated
with torch.cuda.stream(compute_stream):
if o_acc is None:
o_acc, lse_acc = prev_o, prev_lse
else:
o_acc, lse_acc = merge_attention_outputs(o_acc, lse_acc, prev_o, prev_lse)
return o_acc, lse_acc

View File

@@ -92,13 +92,14 @@ def compute_decode_reference(layer_id: int, decode_step: int, scale: float,
q = decode_cap['q'].cuda() # [1, num_heads, head_dim] q = decode_cap['q'].cuda() # [1, num_heads, head_dim]
q_batched = q.unsqueeze(0) # [1, 1, num_heads, head_dim] q_batched = q.unsqueeze(0) # [1, 1, num_heads, head_dim]
# Collect all K, V: prefill chunks from CPU cache + decode tokens from captures # Collect all K, V: prefill chunks from captures + decode tokens from captures
# NOTE: We use prefill captures directly instead of CPU cache because
# the CPU block ID may not equal the chunk index.
all_k = [] all_k = []
all_v = [] all_v = []
# 1. Prefill chunks from CPU cache # 1. Prefill chunks from captures (use captured K/V, not CPU cache)
for cidx in range(num_prefill_chunks): for cidx in range(num_prefill_chunks):
# Get prefill capture to know the sequence length for this chunk
prefill_cap = None prefill_cap = None
for c in prefill_captures: for c in prefill_captures:
if c['layer_id'] == layer_id and c['chunk_idx'] == cidx: if c['layer_id'] == layer_id and c['chunk_idx'] == cidx:
@@ -106,11 +107,9 @@ def compute_decode_reference(layer_id: int, decode_step: int, scale: float,
break break
if prefill_cap is not None: if prefill_cap is not None:
seq_len = prefill_cap['q'].shape[0] # Use captured K/V directly (guaranteed to be correct layer data)
k = k_cache_cpu[layer_id, cidx, :seq_len].cuda() all_k.append(prefill_cap['k'].cuda())
v = v_cache_cpu[layer_id, cidx, :seq_len].cuda() all_v.append(prefill_cap['v'].cuda())
all_k.append(k)
all_v.append(v)
# 2. Decode tokens from captures (up to and including current step) # 2. Decode tokens from captures (up to and including current step)
for step in range(decode_step + 1): for step in range(decode_step + 1):
@@ -184,6 +183,184 @@ v_cache_cpu = offload_engine.v_cache_cpu.clone()
# Calculate number of prefill chunks # Calculate number of prefill chunks
num_prefill_chunks = INPUT_LEN // BLOCK_SIZE num_prefill_chunks = INPUT_LEN // BLOCK_SIZE
# Debug: Compare decode_buffer with captured K/V
print("\n=== DEBUG: Comparing decode_buffer with captured K/V ===")
decode_k_buffer = offload_engine.decode_k_buffer.clone().cpu()
for step in range(NUM_DECODE_TOKENS):
for layer_id in [0, 17, 35]: # Sample a few layers
# Find captured K for this step and layer
for c in decode_captures:
if c['layer_id'] == layer_id and c['decode_step'] == step:
captured_k = c['k'].squeeze(0) # [kv_heads, head_dim]
buffer_k = decode_k_buffer[layer_id, step] # [kv_heads, head_dim]
diff = (captured_k - buffer_k).abs().max().item()
print(f"Step {step}, Layer {layer_id}: captured vs buffer max_diff={diff:.6f}")
break
# Debug: Verify that decode_buffer slices match concatenated captures
print("\n=== DEBUG: Verifying decode_buffer slices ===")
for layer_id in [0]:
for decode_step in [1, 2]: # Check steps that use multiple tokens
# Build expected slice from captures
expected_k_list = []
for step in range(decode_step + 1):
for c in decode_captures:
if c['layer_id'] == layer_id and c['decode_step'] == step:
expected_k_list.append(c['k'].squeeze(0)) # [kv_heads, head_dim]
break
if expected_k_list:
expected_k = torch.stack(expected_k_list, dim=0) # [num_tokens, kv_heads, head_dim]
buffer_slice = decode_k_buffer[layer_id, 0:decode_step+1]
diff = (expected_k - buffer_slice).abs().max().item()
print(f"Decode step {decode_step}, Layer {layer_id}: buffer slice vs expected max_diff={diff:.6f}")
# Print first values
print(f" Buffer[0,0,0]={buffer_slice[0,0,0].item():.6f}, Expected[0,0,0]={expected_k[0,0,0].item():.6f}")
if decode_step >= 1:
print(f" Buffer[1,0,0]={buffer_slice[1,0,0].item():.6f}, Expected[1,0,0]={expected_k[1,0,0].item():.6f}")
# Debug: Print expected K value for block 0, layer 0 (to compare with actual loading)
print("\n=== DEBUG: Expected K values for block 0, layer 0 ===")
for c in prefill_captures:
if c['layer_id'] == 0 and c['chunk_idx'] == 0:
print(f"Captured K[0,0,0] for layer 0, chunk 0: {c['k'][0,0,0].item():.6f}")
break
print(f"CPU cache K[0,0,0,0,0] for layer 0, block 0: {k_cache_cpu[0,0,0,0,0].item():.6f}")
# Debug: Compare CPU cache with captured prefill K/V
print("\n=== DEBUG: Comparing CPU cache with captured prefill K/V ===")
for chunk_idx in [0, 7, 15]: # Sample a few chunks
for layer_id in [0, 17, 35]: # Sample a few layers
# Find captured K for this chunk and layer
for c in prefill_captures:
if c['layer_id'] == layer_id and c['chunk_idx'] == chunk_idx:
captured_k = c['k'] # [seq_len, kv_heads, head_dim]
cpu_cache_k = k_cache_cpu[layer_id, chunk_idx, :captured_k.shape[0]]
diff = (captured_k - cpu_cache_k).abs().max().item()
print(f"Chunk {chunk_idx}, Layer {layer_id}: captured vs CPU cache max_diff={diff:.6f}")
break
# Debug: Get cpu_block_table to check order
kvcache_manager = llm.model_runner.kvcache_manager
# Find the sequence (it should still exist)
from nanovllm.engine.sequence import Sequence
for attr_name in ['sequences', '_sequences', 'active_sequences']:
if hasattr(kvcache_manager, attr_name):
print(f"Found {attr_name}")
break
# Try to get cpu_block_table through a different way
print(f"\n=== DEBUG: CPU block order ===")
# For each prefill capture, check which CPU block it ended up in
for chunk_idx in range(num_prefill_chunks):
for c in prefill_captures:
if c['layer_id'] == 0 and c['chunk_idx'] == chunk_idx:
# Check if this chunk's K matches any CPU block
captured_k_first = c['k'][0, 0, 0].item()
for block_id in range(num_prefill_chunks):
cpu_k_first = k_cache_cpu[0, block_id, 0, 0, 0].item()
if abs(captured_k_first - cpu_k_first) < 1e-6:
print(f"Chunk {chunk_idx} -> CPU block {block_id}")
break
break
# Debug: Check reference vs actual for decode steps 0 and 1
# Also compute partial references (prefill only, decode only) to isolate the bug
from nanovllm.kvcache.chunked_attention import flash_attn_with_lse, merge_attention_outputs
for decode_step in [0, 1]:
print(f"\n=== DEBUG: Reference vs Actual for layer 0, decode {decode_step} ===")
layer_id = 0
# Find the capture
for c in decode_captures:
if c['layer_id'] == layer_id and c['decode_step'] == decode_step:
q = c['q'].cuda() # [1, num_heads, head_dim]
q_batched = q.unsqueeze(0) # [1, 1, num_heads, head_dim]
# Build prefill K/V per-block for block-by-block reference
prefill_k_blocks = []
prefill_v_blocks = []
for cidx in range(num_prefill_chunks):
for pc in prefill_captures:
if pc['layer_id'] == layer_id and pc['chunk_idx'] == cidx:
prefill_k_blocks.append(pc['k'].cuda().unsqueeze(0)) # [1, block_size, kv_heads, head_dim]
prefill_v_blocks.append(pc['v'].cuda().unsqueeze(0))
break
# Build decode K/V
decode_k_list = []
decode_v_list = []
for step in range(decode_step + 1):
for dc in decode_captures:
if dc['layer_id'] == layer_id and dc['decode_step'] == step:
decode_k_list.append(dc['k'].cuda())
decode_v_list.append(dc['v'].cuda())
break
full_prefill_k = torch.cat([kb.squeeze(0) for kb in prefill_k_blocks], dim=0).unsqueeze(0)
full_prefill_v = torch.cat([vb.squeeze(0) for vb in prefill_v_blocks], dim=0).unsqueeze(0)
full_decode_k = torch.cat(decode_k_list, dim=0).unsqueeze(0)
full_decode_v = torch.cat(decode_v_list, dim=0).unsqueeze(0)
full_k = torch.cat([full_prefill_k, full_decode_k], dim=1)
full_v = torch.cat([full_prefill_v, full_decode_v], dim=1)
print(f"Q shape: {q_batched.shape}")
print(f"Prefill K shape: {full_prefill_k.shape}")
print(f"Decode K shape: {full_decode_k.shape}")
print(f"Full K shape: {full_k.shape}")
print(f"Total tokens: prefill={num_prefill_chunks * BLOCK_SIZE}, decode={decode_step + 1}")
# Reference output (single attention over all)
ref_output = flash_attn_func(
q_batched, full_k, full_v,
softmax_scale=scale,
causal=False,
)
# Chunked reference: prefill attention + decode attention + merge
prefill_o, prefill_lse = flash_attn_with_lse(
q_batched, full_prefill_k, full_prefill_v,
softmax_scale=scale,
causal=False,
)
decode_o, decode_lse = flash_attn_with_lse(
q_batched, full_decode_k, full_decode_v,
softmax_scale=scale,
causal=False,
)
chunked_output, _ = merge_attention_outputs(prefill_o, prefill_lse, decode_o, decode_lse)
# Block-by-block reference (simulating ring buffer pipeline)
block_o_acc, block_lse_acc = None, None
for bidx, (kb, vb) in enumerate(zip(prefill_k_blocks, prefill_v_blocks)):
o_blk, lse_blk = flash_attn_with_lse(q_batched, kb, vb, softmax_scale=scale, causal=False)
if block_o_acc is None:
block_o_acc, block_lse_acc = o_blk, lse_blk
else:
block_o_acc, block_lse_acc = merge_attention_outputs(block_o_acc, block_lse_acc, o_blk, lse_blk)
# Compare block-by-block vs single
block_vs_single_diff = (block_o_acc - prefill_o).abs().max().item()
print(f"Block-by-block vs Single max_diff: {block_vs_single_diff:.6f}")
# Compare full reference vs chunked reference
ref_vs_chunked_diff = (ref_output - chunked_output).abs().max().item()
print(f"Reference vs Chunked-reference max_diff: {ref_vs_chunked_diff:.6f}")
ref_output = ref_output.squeeze(0).squeeze(0).cpu()
chunked_output_cpu = chunked_output.squeeze(0).squeeze(0).cpu()
# Actual output
actual_output = c['output'].squeeze(0)
if actual_output.dim() == 3:
actual_output = actual_output.squeeze(0)
diff_ref = (actual_output - ref_output).abs()
diff_chunked = (actual_output - chunked_output_cpu).abs()
print(f"Actual vs Reference max_diff: {diff_ref.max().item():.6f}")
print(f"Actual vs Chunked-ref max_diff: {diff_chunked.max().item():.6f}")
break
print()
# Verify decode outputs # Verify decode outputs
all_passed = True all_passed = True
@@ -208,7 +385,7 @@ for c in decode_captures:
passed = max_diff < 1e-1 passed = max_diff < 1e-1
all_passed = all_passed and passed all_passed = all_passed and passed
# if not passed: if not passed:
print(f"[FAIL] Layer {layer_id}, Decode {decode_step}: max_diff={max_diff:.6f}") print(f"[FAIL] Layer {layer_id}, Decode {decode_step}: max_diff={max_diff:.6f}")
print(f"test_chunked_decode_hook: {'PASSED' if all_passed else 'FAILED'}") print(f"test_chunked_decode_hook: {'PASSED' if all_passed else 'FAILED'}")