[test] Added test_align.py and Before change nanovllm attention.

This commit is contained in:
Zijie Tian
2026-01-04 22:48:01 +08:00
parent 24096431ed
commit e897380127
3 changed files with 58 additions and 33 deletions

View File

@@ -480,7 +480,7 @@ class ModelRunner:
if input_ids.numel() == 0:
break
# Run model forward
#> Run model forward
logits = self.run_model(input_ids, positions, is_prefill=True)
reset_context()

View File

@@ -34,6 +34,14 @@ class Sequence:
def __getitem__(self, key):
return self.token_ids[key]
def __repr__(self):
ids = self.token_ids
if len(ids) > 20:
ids_str = "[" + ", ".join(map(str, ids[:10])) + ", ..., " + ", ".join(map(str, ids[-5:])) + "]"
else:
ids_str = str(ids)
return f"Seq(id={self.seq_id}, status={self.status.name}, tokens={self.num_tokens}, ids={ids_str})"
@property
def is_finished(self):
return self.status == SequenceStatus.FINISHED

View File

@@ -1,28 +1,44 @@
"""
Test alignment between nanovllm and custom torch Qwen3 implementation.
Compares attention layer outputs and QKV tensors to verify correctness.
Usage:
python test_align.py # Without CPU offload
python test_align.py --enable-offload # With CPU offload
python test_align.py --input-len 4096 # Custom input length
"""
import os
os.environ["NANOVLLM_LOG_LEVEL"] = "WARNING"
import argparse
import torch
from transformers import AutoTokenizer
from nanovllm import LLM, SamplingParams
from modeling_qwen3 import Qwen3ForCausalLM
from utils import generate_needle_prompt
# Parse arguments
parser = argparse.ArgumentParser()
parser.add_argument("--enable-offload", action="store_true", help="Enable CPU offload")
parser.add_argument("--input-len", type=int, default=1024 * 12, help="Input sequence length")
parser.add_argument("--model-path", type=str, default="~/models/Qwen3-0.6B/", help="Model path")
args = parser.parse_args()
# Config
MODEL_PATH = os.path.expanduser("~/models/Qwen3-0.6B/")
INPUT_LEN = 64
MODEL_PATH = os.path.expanduser(args.model_path)
INPUT_LEN = args.input_len
ENABLE_OFFLOAD = args.enable_offload
DTYPE = torch.float16
print(f"Config: input_len={INPUT_LEN}, enable_offload={ENABLE_OFFLOAD}")
# Storage for captured tensors
nanovllm_outputs = {}
torch_outputs = {}
nanovllm_qkv = {}
nanovllm_proj_inputs = {} # Input to qkv_proj
torch_proj_inputs = {} # Input to q_proj
nanovllm_proj_inputs = {}
torch_proj_inputs = {}
def make_nanovllm_hook(layer_id: int, storage: dict):
@@ -46,9 +62,7 @@ def make_nanovllm_qkv_hook(layer_id: int, storage: dict):
def make_proj_input_hook(layer_id: int, storage: dict):
"""Capture input to projection layer (hidden_states after layernorm)."""
def hook(module, inputs):
# inputs[0] is hidden_states
hidden = inputs[0]
if hidden.dim() == 2:
hidden = hidden.unsqueeze(0)
@@ -62,25 +76,25 @@ def make_torch_hook(layer_id: int, storage: dict):
return hook
def max_diff(t1: torch.Tensor, t2: torch.Tensor) -> float:
return (t1.float() - t2.float()).abs().max().item()
def cosine_sim(t1: torch.Tensor, t2: torch.Tensor) -> float:
"""Cosine similarity between flattened tensors (1.0 = identical)."""
return torch.nn.functional.cosine_similarity(
t1.flatten().float(), t2.flatten().float(), dim=0
).item()
def compute_qkv_diffs(nano_qkv: dict, torch_qkv: dict, num_kv_groups: int):
"""Compute Q, K, V max diffs. Returns (q_diff, k_diff, v_diff)."""
def compute_qkv_sims(nano_qkv: dict, torch_qkv: dict, num_kv_groups: int):
"""Compute Q, K, V cosine similarities. Returns (q_sim, k_sim, v_sim)."""
nano_q = nano_qkv["q"]
torch_q = torch_qkv["q"].squeeze(0).transpose(0, 1)
q_diff = max_diff(nano_q, torch_q)
nano_k = nano_qkv["k"]
torch_k = torch_qkv["k"].squeeze(0)[::num_kv_groups, :, :].transpose(0, 1)
k_diff = max_diff(nano_k, torch_k)
nano_v = nano_qkv["v"]
torch_v = torch_qkv["v"].squeeze(0)[::num_kv_groups, :, :].transpose(0, 1)
v_diff = max_diff(nano_v, torch_v)
return q_diff, k_diff, v_diff
return cosine_sim(nano_q, torch_q), cosine_sim(nano_k, torch_k), cosine_sim(nano_v, torch_v)
# ============================================================
@@ -90,9 +104,10 @@ print("Loading nanovllm model...")
llm = LLM(
MODEL_PATH,
enforce_eager=True,
max_model_len=4096,
max_num_batched_tokens=4096,
enable_cpu_offload=False,
max_model_len=32768,
gpu_memory_utilization=0.2,
max_num_batched_tokens=32768,
enable_cpu_offload=ENABLE_OFFLOAD,
dtype="float16",
)
@@ -139,39 +154,41 @@ with torch.no_grad():
torch_logits, _, torch_qkv_outputs = torch_model(input_ids, output_qkv_layers=list(range(num_layers)))
# ============================================================
# Compare QKVO per layer (one line each)
# Compare using cosine similarity (1.0 = perfect alignment)
# ============================================================
print("\n" + "=" * 82)
print("\n" + "=" * 70)
print(f"{'Layer':<8} {'I':>10} {'Q':>10} {'K':>10} {'V':>10} {'O':>10}")
print("=" * 82)
print("=" * 70)
all_passed = True
atol = 0.1
threshold = 0.999 # Cosine similarity threshold
for layer_idx in range(num_layers):
# Input diff (to qkv_proj / q_proj)
# Input similarity
nano_in = nanovllm_proj_inputs[layer_idx]
torch_in = torch_proj_inputs[layer_idx]
if nano_in.shape != torch_in.shape and nano_in.numel() == torch_in.numel():
torch_in = torch_in.view(nano_in.shape)
i_diff = max_diff(nano_in, torch_in)
i_sim = cosine_sim(nano_in, torch_in)
# QKV diffs
q_diff, k_diff, v_diff = compute_qkv_diffs(nanovllm_qkv[layer_idx], torch_qkv_outputs[layer_idx], num_kv_groups)
# QKV similarities
q_sim, k_sim, v_sim = compute_qkv_sims(nanovllm_qkv[layer_idx], torch_qkv_outputs[layer_idx], num_kv_groups)
# O diff
# O similarity
nano_out = nanovllm_outputs[layer_idx]
torch_out = torch_outputs[layer_idx]
if nano_out.shape != torch_out.shape and nano_out.numel() == torch_out.numel():
torch_out = torch_out.view(nano_out.shape)
o_diff = max_diff(nano_out, torch_out)
o_sim = cosine_sim(nano_out, torch_out)
# Check pass/fail
passed = all(d < atol for d in [i_diff, q_diff, k_diff, v_diff, o_diff])
passed = all(s >= threshold for s in [i_sim, q_sim, k_sim, v_sim, o_sim])
all_passed = all_passed and passed
status = "" if passed else " *"
print(f"Layer {layer_idx:2d}{status:<3} {i_diff:>10.6f} {q_diff:>10.6f} {k_diff:>10.6f} {v_diff:>10.6f} {o_diff:>10.6f}")
print(f"Layer {layer_idx:2d}{status:<3} {i_sim:>10.6f} {q_sim:>10.6f} {k_sim:>10.6f} {v_sim:>10.6f} {o_sim:>10.6f}")
# ============================================================
# Cleanup and result
@@ -179,8 +196,8 @@ for layer_idx in range(num_layers):
for hook in nanovllm_hooks + torch_hooks:
hook.remove()
print("=" * 82)
print("=" * 70)
if all_passed:
print("test_align: PASSED")
print("test_align: PASSED (cosine_sim >= 0.999)")
else:
print("test_align: FAILED (* = max_diff >= 0.1)")
print("test_align: FAILED (* = cosine_sim < 0.999)")