This commit is contained in:
GeeeekExplorer
2025-06-15 10:31:48 +08:00
parent c1fd4ea3c2
commit fc778a4da9
10 changed files with 19 additions and 22 deletions

View File

@@ -1,2 +1,2 @@
from nanovllm.llm import LLM
from nanovllm.sampling_params import SamplingParams
from nanovllm.sampling_params import SamplingParams

View File

@@ -1,10 +1,11 @@
import os
from dataclasses import dataclass
from transformers import AutoConfig
@dataclass
class Config:
model: str = ''
model: str
max_num_batched_tokens: int = 32768
max_num_seqs: int = 512
max_model_len: int = 4096
@@ -17,5 +18,8 @@ class Config:
num_kvcache_blocks: int = -1
def __post_init__(self):
assert self.model
assert os.path.isdir(self.model)
assert self.kvcache_block_size % 256 == 0
assert 1 <= self.tensor_parallel_size <= 8
self.hf_config = AutoConfig.from_pretrained(self.model)
self.max_model_len = min(self.max_model_len, self.hf_config.max_position_embeddings)

View File

@@ -1,4 +1,5 @@
import atexit
from dataclasses import fields
from time import perf_counter
from tqdm.auto import tqdm
from transformers import AutoConfig, AutoTokenizer
@@ -14,13 +15,9 @@ from nanovllm.engine.model_runner import ModelRunner
class LLMEngine:
def __init__(self, model, **kwargs):
config = Config(model)
for k, v in kwargs.items():
if hasattr(config, k):
setattr(config, k, v)
Sequence.block_size = config.kvcache_block_size
config.hf_config = AutoConfig.from_pretrained(config.model)
config.max_model_len = min(config.max_model_len, config.hf_config.max_position_embeddings)
config_fileds = {field.name for field in fields(Config)}
config_kwargs = {k: v for k, v in kwargs.items() if k in config_fileds}
config = Config(model, **config_kwargs)
self.ps = []
self.events = []
for i in range(1, config.tensor_parallel_size):
@@ -95,4 +92,4 @@ class LLMEngine:
outputs = [{"text": self.tokenizer.decode(token_ids), "token_ids": token_ids} for token_ids in outputs]
if use_tqdm:
pbar.close()
return outputs
return outputs

View File

@@ -57,9 +57,7 @@ class ModelRunner:
def loop(self):
while True:
method_name, args = self.read_shm()
method = getattr(self, method_name, None)
assert callable(method)
method(*args)
self.call(method_name, *args)
if method_name == "exit":
break
@@ -82,8 +80,7 @@ class ModelRunner:
event.set()
def call(self, method_name, *args):
assert self.rank == 0
if self.world_size > 1:
if self.world_size > 1 and self.rank == 0:
self.write_shm(method_name, *args)
method = getattr(self, method_name, None)
assert callable(method)

View File

@@ -11,4 +11,4 @@ class SiluAndMul(nn.Module):
@torch.compile
def forward(self, x: torch.Tensor) -> torch.Tensor:
x, y = x.chunk(2, -1)
return F.silu(x) * y
return y.mul_(F.silu(x))

View File

@@ -69,4 +69,4 @@ class ParallelLMHead(VocabParallelEmbedding):
all_logits = [torch.empty_like(logits) for _ in range(self.tp_size)] if self.tp_rank == 0 else None
dist.gather(logits, all_logits, 0)
logits = torch.cat(all_logits, -1) if self.tp_rank == 0 else None
return logits
return logits

View File

@@ -70,4 +70,4 @@ def get_rope(
):
assert rope_scaling is None
rotary_emb = RotaryEmbedding(head_size, rotary_dim, max_position, base)
return rotary_emb
return rotary_emb

View File

@@ -25,4 +25,4 @@ def set_context(is_prefill, cu_seqlens_q=None, cu_seqlens_k=None, max_seqlen_q=0
def reset_context():
global _CONTEXT
_CONTEXT = Context()
_CONTEXT = Context()

View File

@@ -10,7 +10,6 @@ def default_weight_loader(param: nn.Parameter, loaded_weight: torch.Tensor):
def load_model(model: nn.Module, path: str):
assert os.path.isdir(path)
packed_modules_mapping = getattr(model, "packed_modules_mapping", {})
for file in glob(os.path.join(path, "*.safetensors")):
with safe_open(file, "pt", "cpu") as f: