Files
nano-vllm/CLAUDE.md
2025-12-29 19:56:54 +08:00

304 lines
11 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# CLAUDE.md
This file provides guidance to Claude Code when working with this repository.
## Overview
Nano-vLLM is a lightweight vLLM implementation (~1,200 lines) for fast offline LLM inference. Supports Qwen3 models with CPU offload for long-context inference.
## Sparse Attention
For sparse attention related content (block sparse attention, MInference, FlexPrefill, XAttention, AvgPool, etc.), refer to [`docs/sparse_attention_guide.md`](docs/sparse_attention_guide.md).
## Architecture
### Core Components
- **LLMEngine** (`llm_engine.py`): Main entry, runs prefill-decode loop
- **ModelRunner** (`model_runner.py`): Loads weights, allocates KV cache, CUDA graphs
- **Scheduler** (`scheduler.py`): Two-phase scheduling (prefill → decode)
- **BlockManager** (`block_manager.py`): Paged attention with prefix caching (xxhash), default block size 4096
- **Attention** (`layers/attention.py`): FlashAttention with chunked methods for CPU offload
## CPU Offload System
### Ring Buffer Design
```
GPU Slots: [0] [1] [2] [3] ... (unified ring buffer)
Prefill: slot = chunk_idx % N
Decode: slot[0] = decode, slots[1:] = load previous chunks
```
**Key Files**: `kvcache/offload_engine.py`, `kvcache/hybrid_manager.py`
**Memory Layout**:
- GPU: `[num_layers, num_gpu_blocks, block_size, kv_heads, head_dim]`
- CPU: `[num_layers, num_cpu_blocks, ...]` (pinned memory)
**Key Methods**:
- `load_to_slot_layer(slot, layer, cpu_block)`: Async H2D load
- `offload_slot_to_cpu(slot, cpu_block)`: Async D2H offload
- Per-slot per-layer CUDA events for fine-grained synchronization
**Pipeline**: N-way pipeline with dedicated streams for full compute-transfer overlap. Pipeline depth = N-1 (prefill), (N-1)/2 (decode).
### Stream Architecture
```
Transfer Streams: [slot_0_stream] [slot_1_stream] ... [slot_N_stream]
↓ ↓ ↓
GPU Slots: [slot_0] [slot_1] ... [slot_N]
↓ ↓ ↓
Compute Stream: ←←←←←←←←←←←← [dedicated compute stream] →→→→→→→→→→→→
```
**Key Design Decisions**:
- **Per-slot transfer streams**: Each GPU slot has its own CUDA stream for H2D transfers, enabling parallel loading
- **Dedicated compute stream**: Created with `torch.cuda.Stream()` (NOT `current_stream()`) to avoid implicit synchronization with default stream
- **CUDA Events**: `ring_slot_ready` (transfer complete), `ring_slot_compute_done` (safe to overwrite)
## Scatter-Gather DMA (sgDMA) - INTEGRATED ✓
### Problem & Solution
**Problem**: Strided CPU cache access `k_cache_cpu[:, block_id]` caused slow Device→Pageable transfers at ~1.4 GB/s instead of optimal ~24 GB/s pinned memory bandwidth.
**Solution**: Implemented `cudaMemcpy2D` via custom CUDA extension to handle strided layouts natively. **Integration complete** as of 2025-12-25.
### Quick Start
```python
from nanovllm.comm import memcpy_2d_async
# Transfer block_id across all layers
spitch = num_blocks * features * dtype_size # stride between layers
dpitch = features * dtype_size # contiguous destination
width = features * dtype_size # bytes per row
height = num_layers # number of rows
memcpy_2d_async(gpu_buf, cpu_cache[:, block_id], dpitch, spitch, width, height, "h2d", stream)
```
### Benchmark Performance (Synthetic, 256MB)
| Method | Bandwidth | Speedup |
|--------|-----------|---------|
| **cudaMemcpy2D (sgDMA)** | **24.95 GB/s** | **Baseline** |
| PyTorch strided | 4.25 GB/s | **5.87x slower** |
| PyTorch contiguous | 24.92 GB/s | Same |
### Real-World Performance (A100, Attention Offload)
**Measured from `test_attention_offload.py` profiling**:
| Transfer Type | Count | Bandwidth | Previous | Speedup |
|---------------|-------|-----------|----------|---------|
| **Device→Pinned (D2H)** | 416 | **21.49 GB/s** | 1.40 GB/s | **15.35x** |
| **Pinned→Device (H2D)** | 24,960 | **23.39 GB/s** | N/A | N/A |
| Device→Pageable (D2H) | **0** | N/A | ~40 transfers | **Eliminated** |
**Verification**: All slow Device→Pageable transfers eliminated. System achieves near-optimal PCIe Gen3 x16 bandwidth.
**Build**: `python setup.py build_ext --inplace`
**Files**:
- `csrc/sgdma_kernel.cu`, `csrc/sgdma.cpp`: CUDA extension
- `nanovllm/comm/sgdma.py`: Python API
- `tests/test_sgdma.py`: Standalone benchmark
- `kvcache/offload_engine.py`: Integration (4 methods updated)
### Integration Details
**Modified methods in `offload_engine.py`**:
- `load_to_slot_all_layers()`: H2D ring buffer load
- `offload_slot_to_cpu()`: D2H ring buffer offload
- `offload_decode_slot()`: D2H decode slot offload
- `load_cpu_blocks_to_gpu_slots_all_layers()`: Batch H2D load
**Example replacement**:
```python
# Before (slow, Device→Pageable fallback)
self.k_cache_gpu[:, slot].copy_(self.k_cache_cpu[:, cpu_block], non_blocking=True)
# After (fast, Device→Pinned via sgDMA)
memcpy_2d_async(
self.k_cache_gpu[:, slot], self.k_cache_cpu[:, cpu_block],
self.gpu_pitch, self.cpu_pitch, self.width, self.height,
"h2d", stream=self.transfer_stream_main
)
```
**Actual Impact**: 15.35x faster D2H transfers, eliminates memory transfer bottleneck. Expected 2-3x overall prefill throughput improvement.
## Online Softmax Merge - Triton Fused Kernel ✓
### Problem & Solution
**Problem**: Original PyTorch implementation of `merge_attention_outputs()` launches 7 separate kernels per merge operation:
1. `torch.maximum()` - max(lse1, lse2)
2. `torch.exp()` (2x) - exp(lse1-max), exp(lse2-max)
3. `transpose()` + `unsqueeze()` - reshape for broadcasting
4. Accumulation (6x) - weighted sum operations
5. Division - normalize output
6. `torch.log()` - merge LSE
7. `.to()` - type conversion
**Profiling revealed**: In ChunkedPrefill with 8 layers, these operations consumed **698 ms** GPU time (vs FlashAttention 603 ms), becoming a major bottleneck.
**Solution**: Implemented Triton fused kernels that combine all operations into 2 kernels. **Integration complete** as of 2025-12-25.
### Implementation
**File**: `nanovllm/kvcache/chunked_attention.py:278-408`
Two Triton kernels replace all PyTorch operations:
```python
@triton.jit
def _merge_lse_kernel(...):
"""Fused: max + exp + log"""
max_lse = tl.maximum(lse1, lse2)
exp1 = tl.exp(lse1 - max_lse)
exp2 = tl.exp(lse2 - max_lse)
lse_merged = max_lse + tl.log(exp1 + exp2)
tl.store(lse_out_ptr + offsets, lse_merged, mask=mask)
@triton.jit
def _merge_output_kernel(...):
"""Fused: broadcast + weighted sum + division"""
# Load LSE, compute scaling factors
exp1 = tl.exp(lse1 - max_lse)
exp2 = tl.exp(lse2 - max_lse)
sum_exp = exp1 + exp2
# Process headdim in chunks
for d_offset in range(0, headdim, BLOCK_SIZE):
o1_val = tl.load(o1_ptr + o_idx, mask=mask)
o2_val = tl.load(o2_ptr + o_idx, mask=mask)
o_merged = (o1_val * exp1 + o2_val * exp2) / sum_exp
tl.store(o_out_ptr + o_idx, o_merged, mask=mask)
```
### Performance Results
**From `test_attention_offload.py` profiling** (8 layers, 16K tokens, 16 chunks, 10 iterations):
| Metric | PyTorch (7 kernels) | Triton (2 kernels) | Speedup |
|--------|---------------------|---------------------|---------|
| **GPU time (8 layers)** | 698 ms | 160.7 ms | **4.3x** |
| **Per-layer time** | 87.3 ms | 20.1 ms | **4.3x** |
| **Avg per merge** | 56 µs | 12.9 µs | **4.3x** |
| **Kernel launches** | 10,920 | 3,120 | **71% reduction** |
**Breakdown** (per-layer, 1,560 merges):
- `_merge_output_kernel`: 126.9 ms / 8 = 15.9 ms/layer (avg 10.2 µs/call)
- `_merge_lse_kernel`: 33.8 ms / 8 = 4.2 ms/layer (avg 2.7 µs/call)
### Overall ChunkedPrefill Impact
**GPU time distribution** (test_attention_offload.py):
| Component | Time (ms) | Percentage |
|-----------|-----------|------------|
| FlashAttention | 603.2 | 74.8% |
| Triton Merge | 160.7 | 19.9% |
| Other | 42.1 | 5.3% |
| **Total** | **806.0** | **100%** |
**If using PyTorch merge** (estimated):
- Total GPU time: ~1,343 ms
- **Overall speedup with Triton**: 1.67x
### Correctness Verification
**Test**: `tests/test_chunked_attention.py`
- 12 test cases (6 configs × 2 dtypes)
- All tests PASS with max error < 0.01
- float16: max_diff=0.000488, mean_diff~0.00001
- bfloat16: max_diff=0.003906, mean_diff~0.0001
### Key Files
- `nanovllm/kvcache/chunked_attention.py`: Triton kernels + merge function
- `tests/test_chunked_attention.py`: Correctness tests
- `tests/test_attention_offload.py`: Performance profiling
## Configuration
| Parameter | Default | Notes |
|-----------|---------|-------|
| `kvcache_block_size` | 4096 | Tokens per block |
| `max_num_batched_tokens` | 16384 | Set = max_model_len for long context |
| `gpu_memory_utilization` | 0.9 | GPU memory fraction |
| `enable_cpu_offload` | False | Enable for long context |
## Benchmarking
**Files**: `bench.py` (GPU), `bench_offload.py` (CPU offload), `bench_vllm.py` (comparison)
**Common Issues**:
1. `max_num_batched_tokens < max_model_len`: Set equal for long context
2. CUDA graph dimension mismatch: Ensure `input_len + output_len <= max_model_len`
3. RoPE out of bounds: Check model's `max_position_embeddings` in config.json
**Model Limits**:
- Qwen3-0.6B/4B: 40960 tokens
- Qwen2.5-7B-Instruct-1M: 1048576 tokens
**Performance (Qwen3-0.6B)**:
- GPU: ~18k tok/s (prefill), ~100 tok/s (decode)
- CPU Offload (16K): ~14k tok/s (prefill)
- CPU Offload (32K): ~13k tok/s (prefill)
## Performance Summary
### Completed Optimizations ✓
1. **sgDMA Integration** (2025-12-25)
- Eliminated Device→Pageable transfers
- Achieved 21-23 GB/s bandwidth (near PCIe limit)
- 15.35x speedup on memory transfers
2. **Triton Fused Merge Kernel** (2025-12-25)
- Reduced 7 PyTorch kernels → 2 Triton kernels
- 4.3x speedup on merge operations
- 1.67x overall ChunkedPrefill speedup
3. **N-way Pipeline with Dedicated Streams** (2025-12-25)
- Per-slot transfer streams for parallel H2D across slots
- Dedicated compute stream (avoids CUDA default stream implicit sync)
- N-way pipeline using all available slots (not just 2-slot double buffering)
- **2.0x improvement**: 7.2k → 14.1k tok/s (16K tokens prefill)
### Current Performance Bottlenecks
**From profiling** (`test_attention_offload.py`, 8 layers, 16K tokens):
| Component | GPU Time | Percentage | Optimization Potential |
|-----------|----------|------------|------------------------|
| FlashAttention | 603 ms | 74.8% | ⚠️ Main bottleneck |
| Triton Merge | 161 ms | 19.9% | ✓ Optimized |
| Other | 42 ms | 5.3% | Minor |
### Future Optimization Directions
1. **FlashAttention Optimization** (highest priority)
- Current: 74.8% of GPU time
- Potential: Custom FlashAttention kernel for chunked case
- Expected: 1.5-2x additional speedup
2. ~~**Pipeline Optimization**~~ ✓ COMPLETED
- ~~Better overlap between compute and memory transfer~~
- ~~Multi-stream execution~~
- See: N-way Pipeline with Dedicated Streams above
3. **Alternative to sgDMA** (lower priority, PyTorch-only)
- Reorganize cache layout: `[num_cpu_blocks, num_layers, ...]` instead of `[num_layers, num_cpu_blocks, ...]`
- Trade-off: Extensive refactoring vs minimal sgDMA approach
- Same performance as sgDMA (~24 GB/s)
---
**Author**: Zijie Tian