400 lines
13 KiB
Python
400 lines
13 KiB
Python
"""
|
|
High-performance CPU-GPU KV cache transfer engine.
|
|
|
|
Key design principles for CUDA Graph compatibility:
|
|
1. All tensor addresses are fixed at initialization
|
|
2. Only index tensor contents change between graph replays
|
|
3. Supports both async transfer (for prefill) and graph-based transfer (for decode)
|
|
"""
|
|
|
|
import torch
|
|
from torch import Tensor
|
|
from typing import Dict, List, Tuple, Optional
|
|
from dataclasses import dataclass
|
|
|
|
from nanovllm.kvcache.kernels import gathered_copy_kv
|
|
|
|
|
|
@dataclass
|
|
class TransferEvent:
|
|
"""Tracks a pending async transfer."""
|
|
event: torch.cuda.Event
|
|
layer_id: int
|
|
src_block_id: int
|
|
dst_block_id: int
|
|
direction: str # "h2d" or "d2h"
|
|
|
|
|
|
class OffloadEngine:
|
|
"""
|
|
High-performance CPU-GPU async transfer engine for KV cache offloading.
|
|
|
|
Memory layout:
|
|
- GPU cache: [num_layers, num_gpu_blocks, block_size, kv_heads, head_dim]
|
|
- CPU cache: [num_layers, num_cpu_blocks, block_size, kv_heads, head_dim] (pinned)
|
|
- Gather indices: [num_layers, num_gpu_blocks] (fixed address, variable content)
|
|
|
|
CUDA Graph compatibility:
|
|
- gathered_h2d_layer() can be captured into CUDA graphs
|
|
- update_gather_indices() is called outside graphs to prepare indices
|
|
- All tensor addresses remain fixed across graph replays
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
num_layers: int,
|
|
num_gpu_blocks: int,
|
|
num_cpu_blocks: int,
|
|
block_size: int,
|
|
num_kv_heads: int,
|
|
head_dim: int,
|
|
dtype: torch.dtype = torch.float16,
|
|
num_streams: int = 4,
|
|
):
|
|
self.num_layers = num_layers
|
|
self.num_gpu_blocks = num_gpu_blocks
|
|
self.num_cpu_blocks = num_cpu_blocks
|
|
self.block_size = block_size
|
|
self.num_kv_heads = num_kv_heads
|
|
self.head_dim = head_dim
|
|
self.dtype = dtype
|
|
self.kv_dim = num_kv_heads * head_dim
|
|
self.block_numel = block_size * self.kv_dim
|
|
|
|
# ========== Fixed-address GPU KV cache ==========
|
|
# Shape: [num_layers, num_gpu_blocks, block_size, kv_heads, head_dim]
|
|
self.k_cache_gpu = torch.empty(
|
|
num_layers, num_gpu_blocks, block_size, num_kv_heads, head_dim,
|
|
dtype=dtype, device="cuda"
|
|
)
|
|
self.v_cache_gpu = torch.empty(
|
|
num_layers, num_gpu_blocks, block_size, num_kv_heads, head_dim,
|
|
dtype=dtype, device="cuda"
|
|
)
|
|
|
|
# ========== Fixed-address CPU KV cache (pinned memory) ==========
|
|
self.k_cache_cpu = torch.empty(
|
|
num_layers, num_cpu_blocks, block_size, num_kv_heads, head_dim,
|
|
dtype=dtype, device="cpu", pin_memory=True
|
|
)
|
|
self.v_cache_cpu = torch.empty(
|
|
num_layers, num_cpu_blocks, block_size, num_kv_heads, head_dim,
|
|
dtype=dtype, device="cpu", pin_memory=True
|
|
)
|
|
|
|
# ========== Fixed-address gather indices (content is variable) ==========
|
|
# gather_indices[layer][i] = CPU block id to copy to GPU slot i
|
|
# -1 means no-op (skip this slot)
|
|
self.gather_indices_cpu = torch.empty(
|
|
num_layers, num_gpu_blocks,
|
|
dtype=torch.int64, device="cpu", pin_memory=True
|
|
)
|
|
self.gather_indices_cpu.fill_(-1)
|
|
self.gather_indices_gpu = torch.full(
|
|
(num_layers, num_gpu_blocks), -1,
|
|
dtype=torch.int64, device="cuda"
|
|
)
|
|
|
|
# ========== Transfer streams for async operations ==========
|
|
self.transfer_streams = [torch.cuda.Stream() for _ in range(num_streams)]
|
|
self.compute_stream = torch.cuda.current_stream()
|
|
self._stream_idx = 0
|
|
|
|
# ========== Event tracking for async transfers ==========
|
|
self.pending_events: Dict[Tuple[int, int], torch.cuda.Event] = {}
|
|
|
|
def _get_next_stream(self) -> torch.cuda.Stream:
|
|
"""Round-robin stream selection for parallel transfers."""
|
|
stream = self.transfer_streams[self._stream_idx]
|
|
self._stream_idx = (self._stream_idx + 1) % len(self.transfer_streams)
|
|
return stream
|
|
|
|
# ========== CUDA Graph compatible methods ==========
|
|
|
|
def gathered_h2d_layer(self, layer_id: int) -> None:
|
|
"""
|
|
Execute gathered H2D copy for a single layer.
|
|
|
|
This method is CUDA Graph compatible - can be captured into a graph.
|
|
Before calling, update_gather_indices() must be called to set up
|
|
which CPU blocks to copy to which GPU slots.
|
|
|
|
Args:
|
|
layer_id: Layer index to transfer
|
|
"""
|
|
gathered_copy_kv(
|
|
k_src=self.k_cache_cpu[layer_id],
|
|
v_src=self.v_cache_cpu[layer_id],
|
|
k_dst=self.k_cache_gpu[layer_id],
|
|
v_dst=self.v_cache_gpu[layer_id],
|
|
indices=self.gather_indices_gpu[layer_id],
|
|
)
|
|
|
|
def gathered_h2d_all_layers(self) -> None:
|
|
"""
|
|
Execute gathered H2D copy for all layers.
|
|
|
|
CUDA Graph compatible - can be captured into a single graph.
|
|
"""
|
|
for layer_id in range(self.num_layers):
|
|
self.gathered_h2d_layer(layer_id)
|
|
|
|
def update_gather_indices(
|
|
self,
|
|
layer_id: int,
|
|
mappings: List[Tuple[int, int]],
|
|
) -> None:
|
|
"""
|
|
Update gather indices for a layer (call OUTSIDE CUDA graph).
|
|
|
|
Args:
|
|
layer_id: Layer index
|
|
mappings: List of (cpu_block_id, gpu_slot) tuples
|
|
Only these slots will be updated; others keep their values
|
|
"""
|
|
for cpu_block_id, gpu_slot in mappings:
|
|
self.gather_indices_cpu[layer_id, gpu_slot] = cpu_block_id
|
|
|
|
# Async copy to GPU
|
|
self.gather_indices_gpu[layer_id].copy_(
|
|
self.gather_indices_cpu[layer_id],
|
|
non_blocking=True
|
|
)
|
|
|
|
def update_gather_indices_all_layers(
|
|
self,
|
|
mappings_per_layer: List[List[Tuple[int, int]]],
|
|
) -> None:
|
|
"""
|
|
Update gather indices for all layers.
|
|
|
|
Args:
|
|
mappings_per_layer: mappings_per_layer[layer_id] = [(cpu_block_id, gpu_slot), ...]
|
|
"""
|
|
for layer_id, mappings in enumerate(mappings_per_layer):
|
|
for cpu_block_id, gpu_slot in mappings:
|
|
self.gather_indices_cpu[layer_id, gpu_slot] = cpu_block_id
|
|
|
|
# Batch copy all layers
|
|
self.gather_indices_gpu.copy_(self.gather_indices_cpu, non_blocking=True)
|
|
|
|
def clear_gather_indices(self, layer_id: Optional[int] = None) -> None:
|
|
"""
|
|
Clear gather indices (set all to -1, meaning no-op).
|
|
|
|
Args:
|
|
layer_id: If provided, clear only this layer; otherwise clear all
|
|
"""
|
|
if layer_id is not None:
|
|
self.gather_indices_cpu[layer_id].fill_(-1)
|
|
self.gather_indices_gpu[layer_id].fill_(-1)
|
|
else:
|
|
self.gather_indices_cpu.fill_(-1)
|
|
self.gather_indices_gpu.fill_(-1)
|
|
|
|
# ========== Async transfer methods (for prefill, outside CUDA graph) ==========
|
|
|
|
def prefetch_block_async(
|
|
self,
|
|
layer_id: int,
|
|
cpu_block_id: int,
|
|
gpu_block_id: int,
|
|
) -> torch.cuda.Event:
|
|
"""
|
|
Async prefetch a single block from CPU to GPU.
|
|
|
|
For use in prefill phase where CUDA graphs are not used.
|
|
|
|
Args:
|
|
layer_id: Layer index
|
|
cpu_block_id: Source block in CPU cache
|
|
gpu_block_id: Destination slot in GPU cache
|
|
|
|
Returns:
|
|
CUDA event that signals completion
|
|
"""
|
|
stream = self._get_next_stream()
|
|
event = torch.cuda.Event()
|
|
|
|
with torch.cuda.stream(stream):
|
|
# K cache
|
|
self.k_cache_gpu[layer_id, gpu_block_id].copy_(
|
|
self.k_cache_cpu[layer_id, cpu_block_id],
|
|
non_blocking=True
|
|
)
|
|
# V cache
|
|
self.v_cache_gpu[layer_id, gpu_block_id].copy_(
|
|
self.v_cache_cpu[layer_id, cpu_block_id],
|
|
non_blocking=True
|
|
)
|
|
event.record()
|
|
|
|
self.pending_events[(layer_id, gpu_block_id)] = event
|
|
return event
|
|
|
|
def prefetch_blocks_batch_async(
|
|
self,
|
|
transfers: List[Tuple[int, int, int]], # [(layer_id, cpu_block_id, gpu_block_id), ...]
|
|
) -> List[torch.cuda.Event]:
|
|
"""
|
|
Batch async prefetch multiple blocks.
|
|
|
|
Args:
|
|
transfers: List of (layer_id, cpu_block_id, gpu_block_id) tuples
|
|
|
|
Returns:
|
|
List of CUDA events for each transfer
|
|
"""
|
|
events = []
|
|
for layer_id, cpu_block_id, gpu_block_id in transfers:
|
|
event = self.prefetch_block_async(layer_id, cpu_block_id, gpu_block_id)
|
|
events.append(event)
|
|
return events
|
|
|
|
def offload_block_async(
|
|
self,
|
|
layer_id: int,
|
|
gpu_block_id: int,
|
|
cpu_block_id: int,
|
|
) -> torch.cuda.Event:
|
|
"""
|
|
Async offload a block from GPU to CPU.
|
|
|
|
Args:
|
|
layer_id: Layer index
|
|
gpu_block_id: Source slot in GPU cache
|
|
cpu_block_id: Destination block in CPU cache
|
|
|
|
Returns:
|
|
CUDA event that signals completion
|
|
"""
|
|
stream = self._get_next_stream()
|
|
event = torch.cuda.Event()
|
|
|
|
with torch.cuda.stream(stream):
|
|
# Wait for any compute using this block
|
|
stream.wait_stream(self.compute_stream)
|
|
|
|
# K cache
|
|
self.k_cache_cpu[layer_id, cpu_block_id].copy_(
|
|
self.k_cache_gpu[layer_id, gpu_block_id],
|
|
non_blocking=True
|
|
)
|
|
# V cache
|
|
self.v_cache_cpu[layer_id, cpu_block_id].copy_(
|
|
self.v_cache_gpu[layer_id, gpu_block_id],
|
|
non_blocking=True
|
|
)
|
|
event.record()
|
|
|
|
return event
|
|
|
|
def offload_blocks_batch_async(
|
|
self,
|
|
transfers: List[Tuple[int, int, int]], # [(layer_id, gpu_block_id, cpu_block_id), ...]
|
|
) -> List[torch.cuda.Event]:
|
|
"""
|
|
Batch async offload multiple blocks.
|
|
|
|
Args:
|
|
transfers: List of (layer_id, gpu_block_id, cpu_block_id) tuples
|
|
|
|
Returns:
|
|
List of CUDA events
|
|
"""
|
|
events = []
|
|
for layer_id, gpu_block_id, cpu_block_id in transfers:
|
|
event = self.offload_block_async(layer_id, gpu_block_id, cpu_block_id)
|
|
events.append(event)
|
|
return events
|
|
|
|
# ========== Synchronization methods ==========
|
|
|
|
def wait_for_block(self, layer_id: int, gpu_block_id: int) -> None:
|
|
"""Wait for a specific block's transfer to complete."""
|
|
key = (layer_id, gpu_block_id)
|
|
if key in self.pending_events:
|
|
self.pending_events[key].synchronize()
|
|
del self.pending_events[key]
|
|
|
|
def wait_all_transfers(self) -> None:
|
|
"""Wait for all pending transfers to complete."""
|
|
for stream in self.transfer_streams:
|
|
stream.synchronize()
|
|
self.pending_events.clear()
|
|
|
|
def sync_indices(self) -> None:
|
|
"""Synchronize to ensure all index updates are complete."""
|
|
torch.cuda.current_stream().synchronize()
|
|
|
|
# ========== Cache access methods ==========
|
|
|
|
def get_layer_cache(self, layer_id: int) -> Tuple[Tensor, Tensor]:
|
|
"""
|
|
Get GPU K/V cache tensors for a specific layer.
|
|
|
|
Returns:
|
|
(k_cache, v_cache) tensors for the layer
|
|
Shape: [num_gpu_blocks, block_size, kv_heads, head_dim]
|
|
"""
|
|
return self.k_cache_gpu[layer_id], self.v_cache_gpu[layer_id]
|
|
|
|
def get_all_gpu_cache(self) -> Tuple[Tensor, Tensor]:
|
|
"""
|
|
Get full GPU K/V cache tensors.
|
|
|
|
Returns:
|
|
(k_cache, v_cache) tensors
|
|
Shape: [num_layers, num_gpu_blocks, block_size, kv_heads, head_dim]
|
|
"""
|
|
return self.k_cache_gpu, self.v_cache_gpu
|
|
|
|
def get_cpu_block(
|
|
self,
|
|
layer_id: int,
|
|
cpu_block_id: int,
|
|
) -> Tuple[Tensor, Tensor]:
|
|
"""
|
|
Get a specific CPU block's K/V cache.
|
|
|
|
Returns:
|
|
(k_cache, v_cache) for the block
|
|
Shape: [block_size, kv_heads, head_dim]
|
|
"""
|
|
return (
|
|
self.k_cache_cpu[layer_id, cpu_block_id],
|
|
self.v_cache_cpu[layer_id, cpu_block_id],
|
|
)
|
|
|
|
# ========== Memory info ==========
|
|
|
|
def gpu_memory_bytes(self) -> int:
|
|
"""Total GPU memory used by KV caches."""
|
|
return (
|
|
self.k_cache_gpu.numel() * self.k_cache_gpu.element_size() +
|
|
self.v_cache_gpu.numel() * self.v_cache_gpu.element_size() +
|
|
self.gather_indices_gpu.numel() * self.gather_indices_gpu.element_size()
|
|
)
|
|
|
|
def cpu_memory_bytes(self) -> int:
|
|
"""Total CPU memory used by KV caches."""
|
|
return (
|
|
self.k_cache_cpu.numel() * self.k_cache_cpu.element_size() +
|
|
self.v_cache_cpu.numel() * self.v_cache_cpu.element_size() +
|
|
self.gather_indices_cpu.numel() * self.gather_indices_cpu.element_size()
|
|
)
|
|
|
|
def __repr__(self) -> str:
|
|
return (
|
|
f"OffloadEngine(\n"
|
|
f" num_layers={self.num_layers},\n"
|
|
f" num_gpu_blocks={self.num_gpu_blocks},\n"
|
|
f" num_cpu_blocks={self.num_cpu_blocks},\n"
|
|
f" block_size={self.block_size},\n"
|
|
f" kv_heads={self.num_kv_heads},\n"
|
|
f" head_dim={self.head_dim},\n"
|
|
f" dtype={self.dtype},\n"
|
|
f" gpu_memory={self.gpu_memory_bytes() / 1024**2:.1f}MB,\n"
|
|
f" cpu_memory={self.cpu_memory_bytes() / 1024**2:.1f}MB\n"
|
|
f")"
|
|
) |