486 lines
20 KiB
Python
486 lines
20 KiB
Python
import logging
|
|
import torch
|
|
import torch.cuda.nvtx
|
|
from torch import nn
|
|
import triton
|
|
import triton.language as tl
|
|
|
|
from flash_attn.flash_attn_interface import flash_attn_varlen_func, flash_attn_with_kvcache
|
|
from nanovllm.utils.context import get_context
|
|
from nanovllm.kvcache.sparse.policy import PolicyContext
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@triton.jit
|
|
def store_kvcache_kernel(
|
|
key_ptr,
|
|
key_stride,
|
|
value_ptr,
|
|
value_stride,
|
|
k_cache_ptr,
|
|
v_cache_ptr,
|
|
slot_mapping_ptr,
|
|
D: tl.constexpr,
|
|
):
|
|
idx = tl.program_id(0)
|
|
slot = tl.load(slot_mapping_ptr + idx)
|
|
if slot == -1: return
|
|
key_offsets = idx * key_stride + tl.arange(0, D)
|
|
value_offsets = idx * value_stride + tl.arange(0, D)
|
|
key = tl.load(key_ptr + key_offsets)
|
|
value = tl.load(value_ptr + value_offsets)
|
|
cache_offsets = slot * D + tl.arange(0, D)
|
|
tl.store(k_cache_ptr + cache_offsets, key)
|
|
tl.store(v_cache_ptr + cache_offsets, value)
|
|
|
|
|
|
def store_kvcache(key: torch.Tensor, value: torch.Tensor, k_cache: torch.Tensor, v_cache: torch.Tensor, slot_mapping: torch.Tensor):
|
|
N, num_heads, head_dim = key.shape
|
|
D = num_heads * head_dim
|
|
assert key.stride(-1) == 1 and value.stride(-1) == 1
|
|
assert key.stride(1) == head_dim and value.stride(1) == head_dim
|
|
assert k_cache.stride(1) == D and v_cache.stride(1) == D
|
|
assert slot_mapping.numel() == N
|
|
store_kvcache_kernel[(N,)](key, key.stride(0), value, value.stride(0), k_cache, v_cache, slot_mapping, D)
|
|
|
|
|
|
class Attention(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
num_heads,
|
|
head_dim,
|
|
scale,
|
|
num_kv_heads,
|
|
):
|
|
super().__init__()
|
|
self.num_heads = num_heads
|
|
self.head_dim = head_dim
|
|
self.scale = scale
|
|
self.num_kv_heads = num_kv_heads
|
|
self.k_cache = self.v_cache = torch.tensor([])
|
|
# Layer ID set by model_runner after model creation
|
|
self.layer_id: int = -1
|
|
|
|
def forward(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor):
|
|
context = get_context()
|
|
k_cache, v_cache = self.k_cache, self.v_cache
|
|
if k_cache.numel() and v_cache.numel():
|
|
store_kvcache(k, v, k_cache, v_cache, context.slot_mapping)
|
|
|
|
if context.is_prefill:
|
|
if context.is_chunked_prefill:
|
|
# Chunked prefill: merge attention from previous KV
|
|
o = self._chunked_prefill_attention(q, k, v, context)
|
|
elif context.block_tables is not None: # prefix cache
|
|
k, v = k_cache, v_cache
|
|
o = flash_attn_varlen_func(q, k, v,
|
|
max_seqlen_q=context.max_seqlen_q, cu_seqlens_q=context.cu_seqlens_q,
|
|
max_seqlen_k=context.max_seqlen_k, cu_seqlens_k=context.cu_seqlens_k,
|
|
softmax_scale=self.scale, causal=True, block_table=context.block_tables)
|
|
else:
|
|
o = flash_attn_varlen_func(q, k, v,
|
|
max_seqlen_q=context.max_seqlen_q, cu_seqlens_q=context.cu_seqlens_q,
|
|
max_seqlen_k=context.max_seqlen_k, cu_seqlens_k=context.cu_seqlens_k,
|
|
softmax_scale=self.scale, causal=True, block_table=context.block_tables)
|
|
else: # decode
|
|
if context.is_chunked_prefill:
|
|
# Chunked decode: need to load all KV from CPU+GPU
|
|
o = self._chunked_decode_attention(q, k, v, context)
|
|
else:
|
|
o = flash_attn_with_kvcache(q.unsqueeze(1), k_cache, v_cache,
|
|
cache_seqlens=context.context_lens, block_table=context.block_tables,
|
|
softmax_scale=self.scale, causal=True)
|
|
return o
|
|
|
|
def _chunked_prefill_attention(
|
|
self,
|
|
q: torch.Tensor,
|
|
k: torch.Tensor,
|
|
v: torch.Tensor,
|
|
context,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Compute attention with unified ring buffer for chunked prefill.
|
|
|
|
Ring buffer design:
|
|
- Current chunk's KV is written to ring_slot[chunk_idx % N]
|
|
- Previous chunks' KV are loaded from CPU using N-1 available slots
|
|
- Pipeline: pre-fill slots, then process with overlapped load/compute
|
|
|
|
For each layer:
|
|
1. Current chunk's KV is in k_batched, v_batched (just written by model)
|
|
2. Load previous chunks from CPU using available slots (pipeline)
|
|
3. Compute attention against previous KV (no causal mask)
|
|
4. Compute attention against current KV (causal)
|
|
5. Merge all results using online softmax
|
|
"""
|
|
from nanovllm.kvcache.chunked_attention import flash_attn_with_lse, merge_attention_outputs
|
|
|
|
current_chunk_idx = context.current_chunk_idx
|
|
torch.cuda.nvtx.range_push(f"ChunkedPrefill: L{self.layer_id} Chunk{current_chunk_idx}")
|
|
|
|
# q, k, v shape: [total_tokens, num_heads, head_dim]
|
|
# Reshape for flash attention: [batch, seq, heads, dim]
|
|
q_batched = q.unsqueeze(0) # [1, total_tokens, heads, dim]
|
|
k_batched = k.unsqueeze(0)
|
|
v_batched = v.unsqueeze(0)
|
|
|
|
o_acc = None
|
|
lse_acc = None
|
|
|
|
kvcache_manager = context.kvcache_manager
|
|
seq = context.chunked_seq if hasattr(context, 'chunked_seq') else None
|
|
|
|
if kvcache_manager is not None and seq is not None and self.layer_id >= 0:
|
|
# Get prefilled CPU blocks (blocks from previous chunks)
|
|
cpu_block_table = kvcache_manager.get_prefilled_cpu_blocks(seq)
|
|
|
|
# Apply sparse policy if enabled
|
|
if cpu_block_table and kvcache_manager.sparse_policy is not None:
|
|
num_chunks = getattr(context, 'num_chunks', current_chunk_idx + 1)
|
|
policy_ctx = PolicyContext(
|
|
query_chunk_idx=current_chunk_idx,
|
|
num_query_chunks=num_chunks,
|
|
layer_id=self.layer_id,
|
|
query=None, # Prefill typically doesn't use query for selection
|
|
is_prefill=True,
|
|
block_size=kvcache_manager.block_size,
|
|
total_kv_len=len(cpu_block_table) * kvcache_manager.block_size,
|
|
)
|
|
cpu_block_table = kvcache_manager.sparse_policy.select_blocks(
|
|
cpu_block_table, policy_ctx
|
|
)
|
|
|
|
if cpu_block_table:
|
|
offload_engine = kvcache_manager.offload_engine
|
|
|
|
# Get write slot for current chunk and available load slots
|
|
write_slot = offload_engine.get_write_slot_for_prefill(current_chunk_idx)
|
|
load_slots = offload_engine.get_load_slots_for_prefill(write_slot)
|
|
pipeline_depth = len(load_slots)
|
|
|
|
if pipeline_depth == 0:
|
|
# Only 1 slot total, cannot pipeline - use sync loading
|
|
o_acc, lse_acc = self._sync_load_previous_chunks(
|
|
q_batched, cpu_block_table, offload_engine
|
|
)
|
|
else:
|
|
# Use ring buffer pipeline
|
|
o_acc, lse_acc = self._ring_buffer_pipeline_load(
|
|
q_batched, cpu_block_table, load_slots, offload_engine
|
|
)
|
|
|
|
# Compute attention against current chunk's KV (with causal mask)
|
|
torch.cuda.nvtx.range_push(f"FlashAttn: L{self.layer_id} CurrentChunk (causal)")
|
|
current_o, current_lse = flash_attn_with_lse(
|
|
q_batched,
|
|
k_batched,
|
|
v_batched,
|
|
softmax_scale=self.scale,
|
|
causal=True,
|
|
)
|
|
torch.cuda.nvtx.range_pop()
|
|
|
|
# Merge with accumulated
|
|
if o_acc is None:
|
|
final_o = current_o
|
|
else:
|
|
torch.cuda.nvtx.range_push(f"MergeAttn: L{self.layer_id}")
|
|
final_o, _ = merge_attention_outputs(o_acc, lse_acc, current_o, current_lse)
|
|
torch.cuda.nvtx.range_pop()
|
|
|
|
torch.cuda.nvtx.range_pop() # ChunkedPrefill
|
|
# Remove batch dimension: [1, total_tokens, heads, dim] -> [total_tokens, heads, dim]
|
|
return final_o.squeeze(0)
|
|
|
|
def _sync_load_previous_chunks(
|
|
self,
|
|
q_batched: torch.Tensor,
|
|
cpu_block_table: list,
|
|
offload_engine,
|
|
):
|
|
"""Synchronous loading fallback when pipeline_depth=0."""
|
|
from nanovllm.kvcache.chunked_attention import flash_attn_with_lse, merge_attention_outputs
|
|
|
|
o_acc, lse_acc = None, None
|
|
|
|
for block_idx, cpu_block_id in enumerate(cpu_block_table):
|
|
# Load to slot 0 (single slot)
|
|
offload_engine.load_to_slot_layer(0, self.layer_id, cpu_block_id)
|
|
offload_engine.wait_slot_layer(0, self.layer_id)
|
|
|
|
prev_k, prev_v = offload_engine.get_kv_for_slot(0, self.layer_id)
|
|
|
|
prev_o, prev_lse = flash_attn_with_lse(
|
|
q_batched, prev_k, prev_v,
|
|
softmax_scale=self.scale,
|
|
causal=False,
|
|
)
|
|
|
|
if o_acc is None:
|
|
o_acc, lse_acc = prev_o, prev_lse
|
|
else:
|
|
o_acc, lse_acc = merge_attention_outputs(o_acc, lse_acc, prev_o, prev_lse)
|
|
|
|
return o_acc, lse_acc
|
|
|
|
def _ring_buffer_pipeline_load(
|
|
self,
|
|
q_batched: torch.Tensor,
|
|
cpu_block_table: list,
|
|
load_slots: list,
|
|
offload_engine,
|
|
):
|
|
"""
|
|
Ring buffer async pipeline loading with double buffering.
|
|
|
|
Uses compute_done events to ensure safe buffer reuse:
|
|
- Before loading to slot X, wait for previous compute on slot X to finish
|
|
- Before computing on slot X, wait for load to slot X to finish
|
|
|
|
Timeline with 2 slots (A, B):
|
|
┌──────────────┐
|
|
│ Load B0→A │
|
|
└──────────────┘
|
|
┌──────────────┐ ┌──────────────┐
|
|
│ Load B1→B │ │ Load B2→A │ ...
|
|
└──────────────┘ └──────────────┘
|
|
↘ ↘
|
|
┌──────────────┐ ┌──────────────┐
|
|
│ Compute(A) │ │ Compute(B) │ ...
|
|
└──────────────┘ └──────────────┘
|
|
|
|
The load_to_slot_layer internally waits for compute_done[slot] before
|
|
starting the transfer, ensuring no data race.
|
|
"""
|
|
from nanovllm.kvcache.chunked_attention import flash_attn_with_lse, merge_attention_outputs
|
|
|
|
num_blocks = len(cpu_block_table)
|
|
if num_blocks == 0:
|
|
return None, None
|
|
|
|
pipeline_depth = len(load_slots)
|
|
if pipeline_depth == 0:
|
|
return None, None
|
|
|
|
o_acc, lse_acc = None, None
|
|
|
|
if pipeline_depth == 1:
|
|
# Only 1 slot available, cannot pipeline - use synchronous mode
|
|
slot = load_slots[0]
|
|
for block_idx in range(num_blocks):
|
|
offload_engine.load_to_slot_layer(slot, self.layer_id, cpu_block_table[block_idx])
|
|
offload_engine.wait_slot_layer(slot, self.layer_id)
|
|
prev_k, prev_v = offload_engine.get_kv_for_slot(slot, self.layer_id)
|
|
prev_o, prev_lse = flash_attn_with_lse(
|
|
q_batched, prev_k, prev_v,
|
|
softmax_scale=self.scale,
|
|
causal=False,
|
|
)
|
|
# Record compute done so next load can safely reuse this slot
|
|
offload_engine.record_slot_compute_done(slot, self.layer_id)
|
|
if o_acc is None:
|
|
o_acc, lse_acc = prev_o, prev_lse
|
|
else:
|
|
o_acc, lse_acc = merge_attention_outputs(o_acc, lse_acc, prev_o, prev_lse)
|
|
return o_acc, lse_acc
|
|
|
|
# Double buffering with 2 slots
|
|
slot_A = load_slots[0]
|
|
slot_B = load_slots[1]
|
|
|
|
# Pre-load first block to slot_A (async)
|
|
offload_engine.load_to_slot_layer(slot_A, self.layer_id, cpu_block_table[0])
|
|
|
|
for block_idx in range(num_blocks):
|
|
torch.cuda.nvtx.range_push(f"PipelineBlock: L{self.layer_id} B{block_idx}")
|
|
|
|
# Alternate between slot_A and slot_B
|
|
current_slot = slot_A if block_idx % 2 == 0 else slot_B
|
|
next_slot = slot_B if block_idx % 2 == 0 else slot_A
|
|
|
|
# Wait for current slot's transfer to complete
|
|
offload_engine.wait_slot_layer(current_slot, self.layer_id)
|
|
|
|
# Start async load of next block to the OTHER slot
|
|
# load_to_slot_layer internally waits for next_slot's compute_done
|
|
if block_idx + 1 < num_blocks:
|
|
offload_engine.load_to_slot_layer(next_slot, self.layer_id, cpu_block_table[block_idx + 1])
|
|
|
|
# Compute attention on current slot's data
|
|
torch.cuda.nvtx.range_push(f"FlashAttn: L{self.layer_id} PrevBlock{block_idx}")
|
|
prev_k, prev_v = offload_engine.get_kv_for_slot(current_slot, self.layer_id)
|
|
prev_o, prev_lse = flash_attn_with_lse(
|
|
q_batched, prev_k, prev_v,
|
|
softmax_scale=self.scale,
|
|
causal=False,
|
|
)
|
|
torch.cuda.nvtx.range_pop()
|
|
|
|
# Record compute done - this allows the next round to safely load into this slot
|
|
offload_engine.record_slot_compute_done(current_slot, self.layer_id)
|
|
|
|
# Merge with accumulated
|
|
if o_acc is None:
|
|
o_acc, lse_acc = prev_o, prev_lse
|
|
else:
|
|
o_acc, lse_acc = merge_attention_outputs(o_acc, lse_acc, prev_o, prev_lse)
|
|
|
|
torch.cuda.nvtx.range_pop() # PipelineBlock
|
|
|
|
return o_acc, lse_acc
|
|
|
|
def _chunked_decode_attention(
|
|
self,
|
|
q: torch.Tensor,
|
|
k: torch.Tensor,
|
|
v: torch.Tensor,
|
|
context,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Compute decode attention with double-buffering using decode_load_slots.
|
|
|
|
Decode uses:
|
|
- decode_slot (slot[0]): writes new token's KV
|
|
- decode_load_slots (slots[1:]): load previous chunks from CPU
|
|
|
|
Pipeline design:
|
|
- First half of decode_load_slots: 'compute' buffer
|
|
- Second half: 'prefetch' buffer
|
|
- Double-buffer between them for async overlap
|
|
|
|
Timeline:
|
|
┌─────────────┐ ┌─────────────┐ ┌─────────────┐
|
|
│Load C0→buf0 │ │Load C1→buf1 │ │Load C2→buf0 │ ...
|
|
└─────────────┘ └─────────────┘ └─────────────┘
|
|
↘ ↘ ↘
|
|
┌─────────────┐ ┌─────────────┐ ┌─────────────┐
|
|
│ Attn(C0) │ │ Attn(C1) │ │ Attn(C2) │
|
|
└─────────────┘ └─────────────┘ └─────────────┘
|
|
"""
|
|
from nanovllm.kvcache.chunked_attention import flash_attn_with_lse, merge_attention_outputs
|
|
|
|
# q shape: [batch_size, num_heads, head_dim] (single decode token per sequence)
|
|
q_batched = q.unsqueeze(1) # [batch, 1, heads, dim]
|
|
|
|
kvcache_manager = context.kvcache_manager
|
|
seq = context.chunked_seq
|
|
|
|
# Get all CPU blocks for this sequence
|
|
cpu_block_table, _ = kvcache_manager.get_all_cpu_blocks(seq)
|
|
if self.layer_id == 0:
|
|
logger.debug(f"Decode attention: cpu_block_table={cpu_block_table}, seq.block_table={list(seq.block_table)}")
|
|
if not cpu_block_table:
|
|
raise RuntimeError("Chunked decode attention failed: no CPU blocks available")
|
|
|
|
# Apply sparse policy if enabled
|
|
if kvcache_manager.sparse_policy is not None:
|
|
policy_ctx = PolicyContext(
|
|
query_chunk_idx=0,
|
|
num_query_chunks=1,
|
|
layer_id=self.layer_id,
|
|
query=q_batched, # Decode provides query for query-aware selection
|
|
is_prefill=False,
|
|
block_size=kvcache_manager.block_size,
|
|
total_kv_len=len(cpu_block_table) * kvcache_manager.block_size,
|
|
)
|
|
cpu_block_table = kvcache_manager.sparse_policy.select_blocks(
|
|
cpu_block_table, policy_ctx
|
|
)
|
|
|
|
offload_engine = kvcache_manager.offload_engine
|
|
|
|
# Chunk size = capacity of each double buffer region (compute/prefetch)
|
|
# Each region uses half of decode_load_slots
|
|
chunk_size = max(1, len(offload_engine.decode_load_slots) // 2)
|
|
num_chunks = (len(cpu_block_table) + chunk_size - 1) // chunk_size
|
|
|
|
o_acc = None
|
|
lse_acc = None
|
|
|
|
# Double buffering state: True = use Compute region, False = use Prefetch region
|
|
use_compute = True
|
|
|
|
# Pre-load first chunk to Compute region (async)
|
|
first_chunk_ids = cpu_block_table[:min(chunk_size, len(cpu_block_table))]
|
|
offload_engine.load_to_compute_layer(self.layer_id, first_chunk_ids)
|
|
|
|
for chunk_idx in range(num_chunks):
|
|
start = chunk_idx * chunk_size
|
|
end = min(start + chunk_size, len(cpu_block_table))
|
|
num_blocks_in_chunk = end - start
|
|
|
|
# Wait for current buffer to be ready
|
|
if use_compute:
|
|
offload_engine.wait_compute_layer(self.layer_id)
|
|
else:
|
|
offload_engine.wait_prefetch_layer(self.layer_id)
|
|
|
|
# Trigger async prefetch of next chunk to the OTHER buffer
|
|
# This overlaps transfer with current chunk's computation
|
|
if chunk_idx + 1 < num_chunks:
|
|
next_start = end
|
|
next_end = min(next_start + chunk_size, len(cpu_block_table))
|
|
next_chunk_ids = cpu_block_table[next_start:next_end]
|
|
if use_compute:
|
|
# Current in Compute, prefetch next to Prefetch region
|
|
offload_engine.load_to_prefetch_layer(self.layer_id, next_chunk_ids)
|
|
else:
|
|
# Current in Prefetch, prefetch next to Compute region
|
|
offload_engine.load_to_compute_layer(self.layer_id, next_chunk_ids)
|
|
|
|
# Get KV from current buffer
|
|
if use_compute:
|
|
k_chunk, v_chunk = offload_engine.get_kv_for_compute(
|
|
self.layer_id, num_blocks_in_chunk
|
|
)
|
|
else:
|
|
k_chunk, v_chunk = offload_engine.get_kv_for_prefetch(
|
|
self.layer_id, num_blocks_in_chunk
|
|
)
|
|
|
|
# Compute attention for this chunk
|
|
o_chunk, lse_chunk = flash_attn_with_lse(
|
|
q_batched, k_chunk, v_chunk,
|
|
softmax_scale=self.scale,
|
|
causal=False,
|
|
)
|
|
|
|
# Merge with accumulated
|
|
if o_acc is None:
|
|
o_acc, lse_acc = o_chunk, lse_chunk
|
|
else:
|
|
o_acc, lse_acc = merge_attention_outputs(o_acc, lse_acc, o_chunk, lse_chunk)
|
|
|
|
# Swap buffers for next iteration
|
|
use_compute = not use_compute
|
|
|
|
# Now attend to Decode region (contains accumulated decode tokens)
|
|
pos_in_block = context.decode_pos_in_block
|
|
start_pos = context.decode_start_pos_in_block
|
|
num_accumulated = pos_in_block - start_pos + 1
|
|
|
|
if num_accumulated > 0:
|
|
decode_k = offload_engine.k_cache_gpu[self.layer_id, offload_engine.decode_slot, start_pos:pos_in_block+1]
|
|
decode_v = offload_engine.v_cache_gpu[self.layer_id, offload_engine.decode_slot, start_pos:pos_in_block+1]
|
|
decode_k = decode_k.unsqueeze(0)
|
|
decode_v = decode_v.unsqueeze(0)
|
|
|
|
decode_o, decode_lse = flash_attn_with_lse(
|
|
q_batched, decode_k, decode_v,
|
|
softmax_scale=self.scale,
|
|
causal=False,
|
|
)
|
|
|
|
if o_acc is None:
|
|
o_acc = decode_o
|
|
else:
|
|
o_acc, _ = merge_attention_outputs(o_acc, lse_acc, decode_o, decode_lse)
|
|
|
|
if o_acc is None:
|
|
raise RuntimeError("Chunked decode attention failed: no KV available")
|
|
|
|
return o_acc
|